论文
陈乔松1,周丽1,毛彦嵋2,王进1,邓欣1
为解决加深主干网络造成的检测速度下降问题,提出了一种基于特征融合与通道筛选的目标检测方法.首先,该方法合理地复用了每个下采样阶段内的子空间信息,在每个下采样阶段,利用所设计的8倍、4倍、2倍下采样模块进行特征融合.然后,将融合后的特征图谱进行自适应通道筛选后组装到SSD的网络中,强化全局信息在目标检测模型中的作用.最后,设计了基于余弦距离的分类损失函数,使目标分类的准确度更高.以VGG网络为主干网络,参照SSD目标检测网络,加入了提出的下采样特征融合模块、自适应通道筛选模块以及改进的损失函数,进行了多组对比试验.结果表明,当网络的图像输入尺寸为512×512时,该方法在Pascal VOC 2007与Pascal VOC 2012数据集上对于目标检测的平均精度均值达到了82.2%,优于所对比的单级目标检测模型.该方法在保证实时检测速度的条件下,达到与拥有较深主干网络的检测模型同级别的性能.