由于传统无迹卡尔曼滤波估算方法具有局限性,为了能准确估算动力电池荷电状态(state of charge,SOC),提出了一种基于无迹卡尔曼粒子滤波的动力电池SOC估算方法.以三元锂电池为研究对象,建立了电池二阶RC等效电路模型,通过对电池进行充放电试验辨识出模型参数,并验证模型准确性.采集了实际工况下的电池数据,分别用无迹卡尔曼滤波算法、粒子滤波算法和无迹卡尔曼粒子滤波算法估算电池SOC,在MATLAB中进行了仿真试验,并对估算的电池SOC进行比较.结果表明:无迹卡尔曼粒子滤波算法可以快速准确地估算出电池SOC,误差小于2.5%,优于另外2种算法.
果园环境下柑橘的快速准确检测是自主采摘机器人作业的关键.针对现有的模型过于冗余、检测速度与精度不平衡等问题,提出一种轻量型果园环境果实检测方法.在YOLOv4算法的基础上引入焦点损失函数(Focal Loss)来提高模型在二分类检测任务中的负样本挖掘能力,并针对模型参数冗余等问题提出一种优化的模型剪枝方法.试验结果表明:提出的方法在果园环境中柑橘果实数据集检测得到的平均精度均值(mean average precision,MAP)达到94.22%,相较于YOLOv4模型提高了1.18%,模型参数减小了95.22%,模型尺寸为原来的4.84%,检测速度为原来的4.03倍.
针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on shared neighbors, SN-WLLE)算法,并用于滚动轴承故障诊断.该算法首先使用余弦距离划分样本邻域;其次计算样本邻域对相似度用以评估样本共享近邻信息,并结合样本的6种邻居分布修正局部结构挖掘,提高多共享近邻的k近邻重构准确性;接着从多流形的角度评估样本点与近邻点间的稀疏分布一致性,以获得样本的重要性指标,并在低维空间保持该信息,进而提取准确的鉴别特征;最后结合KNN分类器构建出完备的轴承故障诊断模型.采用凯斯西储大学轴承数据集和实验室测试平台轴承数据集,从可视化评估、定量聚类评估、故障识别精度评估及鲁棒性评估等方面进行分析.结果表明:SN-WLLE算法的F值保持在108以上水准,平均故障识别精度最低可达0.973 4,不仅具有较好的类内紧致性与类间可分性,还对近邻参数k具有低敏感性.