元胞机制下机坪机会网络缓存控制策略

陈维兴,苏景芳,孟美含

江苏大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (1) : 75-82.

PDF(5681 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(5681 KB)
江苏大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (1) : 75-82. DOI: 10.3969/j.issn.1671-7775.2022.01.011
论文

元胞机制下机坪机会网络缓存控制策略

作者信息 +

Control strategy of apron opportunity network cache under cell evolution rule

Author information +
文章历史 +

摘要

针对机坪感知机会网络中节点缓存空间的限制导致的数据拥塞问题,提出元胞演化规则下机坪机会网络缓存控制策略(ACER).建立基于节点拥塞度的路由通信模型,对节点拥塞度进行判断,在拥塞度较低节点中进行基于概率的数据路由通信,对于拥塞度较高的节点使用元胞自动机的消息丢弃策略,有效地缓解了因数据拥塞产生的网络投递率低等问题,使节点负载均衡地进行数据传输.基于机会网络环境(ONE)仿真平台,采用天津滨海国际机场地图来进行试验,进行不同节点数量下、不同缓存空间下的算法性能分析.结果表明,在机坪网络仿真环境中,不同节点数量以及不同缓存空间下,相对DY、DL缓存管理策略,ACER投递率最高提高97%,网络开销最多可降低70%,并且传输时延具有一定程度的改善.

Abstract

To solve the problem of data congestion due to the limitation of node buffer space in the apron-aware opportunity network, a control strategy of apron opportunity network cache under cellular evolution rule (ACER) was proposed. A routing communication model was established based on node congestion degree. The node congestion was judged, and the data routing communication based on probability was carried out in the nodes with low congestion degree. For the nodes with high congestion degree, the message discarding strategy of cellular automata was used to effectively alleviate the network issues of low delivery rate caused by data congestion, so that the data transmission of node load was balanced. Based on the opportunity network environment (ONE) simulation platform, the map of Tianjin Binhai International Airport was used to conduct experiments to analyze the performance of the algorithm under different numbers of nodes and different cache spaces. The results show that in the apron network simulation environment, with different numbers of nodes and different cache capacities, compared to DY and DL cache management strategies, the ACER delivery rate is increased by 97% at most with the network overhead reduced by 70% at most, and the transmission delay has a certain degree of improvement.

关键词

机坪网络 / 机会网络 / 缓存控制 / 拥塞度 / 概率路由 / 元胞自动机

Key words

 apron  / network / opportunity network / cache control / congestion / probabilistic routing / cellular automata

引用本文

导出引用
陈维兴, 苏景芳, 孟美含. 元胞机制下机坪机会网络缓存控制策略[J]. 江苏大学学报(自然科学版), 2022, 43(1): 75-82 https://doi.org/10.3969/j.issn.1671-7775.2022.01.011
CHEN Weixing, SU Jingfang, MENG Meihan. Control strategy of apron opportunity network cache under cell evolution rule[J]. Journal of Jiangsu University(Natural Science Edition), 2022, 43(1): 75-82 https://doi.org/10.3969/j.issn.1671-7775.2022.01.011

参考文献

[1]陈维兴,苏景芳,孟美含.机坪感知场景下WSN-ON接入机制与协议[J].江苏大学学报(自然科学版),2020,41(3):359-365.
CHEN W X, SU J F, MENG M H. WSN-ON access mechanism and protocol under apron awareness environment[J]. Journal of Jiangsu University (Natural Science Edition),2020,41(3):359-365. (in Chinese)
[2]黄德玲,邱忠权,彭大芹.城市环境下的一种车辆自组织网络机会路由协议[J].重庆邮电大学学报(自然科学版),2018,30(4):484-491.
HUANG D L, QIU Z Q, PENG D Q. An opportunistic VANET routing in urban environment[J]. Journal of Chongqing University Posts and Telecommunications (Natural Science Edition),2018,30(4):484-491. (in Chinese)
[3]张峰.机会网络中基于节点相遇间隔的缓存管理策略[J].计算机科学,2019,46(5):57-61.
ZHANG F. Node encounter interval based buffer ma-nagement strategy in opportunistic networks[J]. Compu-ter Science, 2019,46(5):57-61. (in Chinese)
[4]EZIFE F, LI W, YANG S H. A survey of buffer ma-nagement strategies in delay tolerant networks[C]∥Proceedings of the 14th IEEE International Conference on Mobile Ad Hoc and Sensor Systems. New York:IEEE, 2017:599-603.
[5]张峰,王小明,张立臣,等.机会网络中基于元胞学习自动机的拥塞控制策略[J].四川大学学报(工程科学版),2016,48(1):158-165.
ZHANG F, WANG X M, ZHANG L C, et al. A cellular-learning-automata-based congestion control strategy in opportunistic networks[J]. Journal of Sichuan University(Engineering Science Edition), 2016,48(1):158-165. (in Chinese)
[6]WANG B, LIU L, LI F, et al. A congestion control strategy for opportunistic network[C]∥Proceedings of 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference. New York:IEEE,2018:1824-1828. 
[7]SILVA M D, NUNES I O, MINI R A F, et al. ST-Drop: a novel buffer management strategy for D2D opportunistic networks[C]∥Proceedings of the 2017 IEEE Symposium on Computers and Communications. New York:IEEE, 2017:1300-1305.
[8]KRIFA A, BARAKAT C, SPYROPOULOS T. Optimal buffer management policies for delay tolerant networks[C]∥Proceedings of the 2008 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Piscataway:IEEE Computer Society, 2008:260-268.
[9]SZABO C. Complex systems modeling and analysis[C]∥Proceedings of the 2019 Winter Simulation Conference. New York:IEEE, 2019:1495-1503.
[10]AHANGARAN M, TAGHIZADEH N, BEIGY H. Associative cellular learning automata and its applications[J].Applied Soft Computing Journal, 2017, doi:10.1016/j.asoc.2016.12.006.
[11]NAVID A H F, JAVADI H H S. ICLEAR: energy aware routing protocol for WSN using irregular cellular learning automata[C]∥Proceedings of the 2009 IEEE Symposium on Industrial Electronics and Applications. Piscataway:IEEE Computer Society, 2009:463-468.
[12]CUI J Q, CAO S Q, CHANG Y N, et al. An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network[J]. IEEE Access, 2019,7:35274-35286.

基金

国家自然科学基金民航联合研究基金资助项目(U1433107,U1933107); 天津市教委自然科学科研基金资助项目(2018KJ237); 中央高校基本科研业务中国民航大学专项(3122017002); 中国民航大学第九届波音基金资助项目(20190621014)

PDF(5681 KB)

65

Accesses

0

Citation

Detail

段落导航
相关文章

/