目的: 探索体外模拟糖尿病状态下外源性IL-33对心肌成纤维细胞的作用。方法: 体外分离培养新生乳鼠心脏成纤维细胞,设立对照组(DMEM/F12+30 mmol/L甘露醇),高糖组(DMEM/F12+30 mmol/L葡萄糖),高糖+高迁移率族蛋白1(HMGB1)组(1 μg/mL),高糖+HMGB1+IL-33组(3 ng/mL)。经不同处理后,蛋白质印迹检测胶原蛋白Ⅰ、IL-33、二酰基甘油激酶ζ(DGKζ)表达量的变化;ELISA检测二酰基甘油(DAG)的分泌释放,以及蛋白激酶Cβ(PKCβ)活性的改变。结果: 心肌成纤维细胞经高糖处理后胶原蛋白Ⅰ生成增加,IL-33产量降低,HMGB1使上述情况进一步加剧,心肌细胞内DGKζ的表达下调,引起DAG的升高,并进一步促进PKCβ的激活,引发心肌纤维化。加入外源性IL-33对上述过程具有抑制作用,可抗心肌纤维化。结论: 外源性IL-33在心肌成纤维细胞模拟糖尿病状态下起抗纤维化作用。
Abstract
Objective: To investigate the role of IL-33 on cardiac fibrosis under high glucose treatment on cardiac fibroblasts. Methods:Isolated rat cardiac fibroblasts were divided into following groups: control (DMEM/F12+30 mmol/L mannitol), high glucose(DMEM/F12+30 mmol/L glucose),high glucose+HMGB1(1 μg/mL), high glucose +HMGB1+IL-33 (3 ng/mL).The expression of the collagen I, IL-33 and DGK ζ in the cardiac fibroblasts were evaluated by western blotting. The DAG and the activity of PKCβ was detected by ELISA. Results:When cardiac fibroblasts challenged with high glucose, the collagen I generation was increased and the production of IL-33 was decreased. The effect of high glucose was exaggerated by HMGB1. In addition, the DGKζ expression was decreased, DAG content was increased and further promoted the activation of PKCβ.Exogenous IL-33 attenuated above effects. Conclusion:Exogenous IL-33 plays a key role in anti-cardiac fibrosis induced by high glucose.
关键词
IL-33 /
糖尿病心肌病 /
肌成纤维细胞 /
胶原蛋白 /
纤维化
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Maya L,Villarreal FJ. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Mol Cell Cardia, 2010,48(3):524-529.
[2]Tao A,Song J,Tao R,et al.Cardiomyocytefibroblast interaction contributes to diabetic cardiomyopathy in mice: Role of HMGB1/TLR4/IL33 axis. Biochim Biophys Acta, 2015, 1852(10 Pt A):2075-2085.
[3]Geraldes P,King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res, 2010, 106(8):1319-1331.
[4]Kakkar R,Lee RT. The IL33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov, 2008, 7(10):827-840.
[5]Liew FY, Pitman NI, McInnes IB, et al. Diseaseassociated functions of IL33: the new kid in the IL1 family.Nat Rev Immunol, 2010, 10(2):103-110.
[6]Seki K, Sanada S, Kudinova AY, et al. Interleukin33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Hear Fail, 2009, 2(6):684-691.
[7]Huynh K, Bernardo BC,McMullen JR, et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther, 2014, 142(3): 375-415.
[8]Song SE, Kim YM,Kim JY, et al. IGFBP5 mediates high glucoseinduced cardiac fibroblast activation.J Mol Endocrinol, 2013, 50(3):291-303.
[9]Shamhart PE, Luther DJ, Adapala RK, et al. Hyperglycemia enhances function and differentiation of adult rat cardiac fibroblasts. Can J Physiol Pharmacol, 2014, 92(7):598-604.
[10]Wang WK, Wang B, Lu QH, et al. Inhibition of highmobility group box 1 improves myocardial fibrosis and dysfunction in diabetic cardiomyopathy. Int J Cardiol, 2014, 172(1):202-212.
[11]Mandavia CH, Aroor AR, Demarco VG, et al. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes Life Sci, 2013, 92(11):601-608.
[12]Harris HE,Andersson U, Pisetsky DS, et al. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol, 2012, 8(4):195-202.
[13]Agenllo D, Wang H, Yang H, et al. HMGB1, a DNAbinding protein with cytokine activity, induces brain TNF and IL6 production, and mediates anorexia and taste aversion. Cytokine, 2002, 18(4):231-236.
[14]Bianchi ME. HMGB1 loves company. J Leukoc Biol, 2009, 86(3):573-576.
[15]Sha Y, Zmijewski J, Abraham E, et al. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol, 2008, 180(4): 2531-2537.
[16]Geraldes P,King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res, 2010, 106(8):1319-1331.
[17]Meier M, Menne J,Haller H. Targeting the protein kinase C family in the diabetic kidney: lessons from analysis of mutant mice. Diabetologia, 2009, 52(5): 765-775.
[18]Hutchinson KR, Lord CK,Stewart Jr JA, et al. Cardiac fibroblastdependent extracellular matrix accumulation is associated with diastolic stiffness in type 2 diabetes. PLoS One, 2013, 8(8): e72080.
[19]Wang WK, Lu QH, Zhang JN, et al. HMGB1 mediates hyperglycaemiainduced cardiomyocyte apoptosis via ERK/Ets1 signalling pathway. J Cell Mol Med, 2014, 18(11):2311-2320.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}