Oscillating evaporation characteristics of droplets under action of ion wind

WANG Junfeng, ZHAO Tianyue, TIAN Jiameng, XU Haojie, ZUO Lei

Journal of Jiangsu University(Natural Science Edition) ›› 2024, Vol. 45 ›› Issue (2) : 206-212.

PDF(6500 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(6500 KB)
Journal of Jiangsu University(Natural Science Edition) ›› 2024, Vol. 45 ›› Issue (2) : 206-212. DOI: 10.3969/j.issn.1671-7775.2024.02.012

Oscillating evaporation characteristics of droplets under action of ion wind

Author information +
History +

Abstract

An experimental device for testing droplet evaporation under the action of ionic wind was designed. The dynamic evaporation behaviors of evaporation rate, oscillation amplitude and oscillation frequency of deionized water droplet under different electric fields and ambient gases were investigated, and the velocity distribution of ion wind field was also measured. The results show that when the voltage is lower than the corona voltage, the electric field force can reduce the droplet evaporation rate. When the voltage is higher than the corona voltage, the formation of ion wind can strengthen the droplet evaporation. Both of the increases in voltage and gas ions mobility can augment the ionic wind speed, which intensifies the droplet oscillation and increases the droplet evaporation rate. Compared with the natural evaporation of droplet, the maximum enhancement ratio of droplet evaporation rate under the action of ion wind can reach 9.89. With the increasing of voltage, the ion wind changes from the unstable status to the stable status.

Key words

droplet / non-uniform electric field / evaporation characteristic / oscillation characteristic / corona wind / ambient gas

Cite this article

Download Citations
WANG Junfeng, ZHAO Tianyue, TIAN Jiameng, et al. Oscillating evaporation characteristics of droplets under action of ion wind[J]. Journal of Jiangsu University(Natural Science Edition), 2024, 45(2): 206-212 https://doi.org/10.3969/j.issn.1671-7775.2024.02.012

References

[1]王贞涛,张永辉,董庆铭,等. 风送荷电喷雾特性试验[J]. 江苏大学学报(自然科学版), 2015,36(4):425-430.
WANG Z T, ZHANG Y H, DONG Q M, et al. Experiment of wind-blowing electrostatically charged spray[J]. Journal of Jiangsu University (Natural Science Edition), 2015,36(4):425-430.(in Chinese)
[2]陈斌,周致富,辛慧. 制冷剂瞬态闪蒸喷雾冷却研究进展[J]. 化工学报, 2018,69(1):57-68.
CHEN B, ZHOU Z F, XIN H. Cryogen transient fla-shing spray cooling: state of art[J]. CIESC Journal, 2018,69(1):57-68.(in Chinese)
[3]王军锋,卜佳振,王晓英,等. 大载荷无人直升机静电喷雾沉积特性试验研究[J]. 排灌机械工程学报, 2020,38(12):1239-1244.
WANG J F, BU J Z, WANG X Y, et al. Experimental study on electrostatic spray deposition characteristics of large-load unmanned aerial vehicle[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020,38(12):1239-1244.(in Chinese)
[4]XU H J, WANG J F, TIAN J M, et al. Electrohydrodynamic disintegration of dielectric fluid blended with ethanol[J]. Physics of Fluids, DOI: 10.1063/5.0052196.
[5]王晓英,王军锋,闻建龙,等. 荷电液滴蒸发破碎过程的数学模型[J]. 排灌机械, 2008,26(4): 65-68.
WANG X Y, WANG J F, WEN J L, et al. Mathematic model of evaporation and breakup for charged droplets[J]. Drainage and Irrigation Machinery, 2008,26(4):65-68.(in Chinese)
[6]李敬彬,程康,李根生,等. 液氮-冰粒射流水滴冻结与冲蚀试验研究[J]. 流体机械, 2022,50(9):1-6.
LI J B, CHENG K, LI G S, et al. Experimental study on the solidification and erosion of liquid nitrogenice particle jet droplets[J]. Fluid Machinery, 2022,50(9):1-6.(in Chinese)
[7]严红,陈福振. 航空发动机燃油雾化特性研究进展[J]. 推进技术, 2020,41(9):2038-2058.
YAN H, CHEN F Z. Review on fuel atomization in aeroengine[J]. Journal of Propulsion Technology, 2020,41(9):2038-2058.(in Chinese)
[8]王非,杨清波,翁文兵,等. 空调式厂房油雾颗粒扩散分布试验研究[J]. 流体机械, 2023,51(3):12-19.
WANG F, YANG Q B, WENG W B, et al. Experimental study on diffusion distribution of oil mist particles in air-conditioned factory building[J]. Fluid Machinery, 2023,51(3):12-19.(in Chinese)
[9]张天昊,王军锋.电场强化基面液滴蒸发的研究进展[J].排灌机械工程学报, 2023,41(4):384-392.
ZHANG T H, WANG J F. Enhancement of evaporation of droplet on substrate by electric field[J]. Journal of Drainage and Irrigation Machinery Engineering,2023,41(4):384-392.(in Chinese)
[10]要志宏,关倩倩,聂相珍,等. 食品干燥技术研究进展[J]. 农业与技术, 2016,36(16):249-250.
YAO Z H, GUAN Q Q, NIE X Z, et al. Review on food drying technology[J]. Agriculture and Technology, 2016, 36(16): 249-250. (in Chinese)
[11]周龙大,赵立新,刘琳,等. 脉冲非均匀电场下水滴运动及碰撞特性研究[J]. 流体机械, 2023,51(6):6-12.
ZHOU L D, ZHAO L X, LIU L, et al. Study of motion and collision characteristics of water droplets under pulsed non-uniform electric field [J]. Fluid Machinery, 2023,51(6):6-12.(in Chinese)
[12]TAKANO K, TANASAWA I, NISHIO S. Active enhancement of evaporation of a liquid drop on a hot solid surface using a static electric field[J]. International Journal of Heat and Mass Transfer, 1994,37:65-71.
[13]BAGHAEI LAKEH R, MOLKI M. Targeted heat transfer augmentation in circular tubes using a corona jet[J]. Journal of Electrostatics, 2012,70(1):31-42.
[14]XU H J, WANG J F, TIAN J M, et al. Evaporation characteristics and heat transfer enhancement of sessile droplets under non-uniform electric field[J]. Experimental Thermal and Fluid Science, DOI: 10.1016/j.expthermflusci.2021.110378.
[15]ASBURY G R, HILL H H. Using different drift gases to change separation factors (α) in ion mobility spectrometry[J]. Anal Chem, 2000,72(3):580-584.
[16]LIU Y P, HUANG S L, ZHU L. Influence of humidity and air pressure on the ion mobility based on drift tube method[J]. CSEE Journal of Power and Energy Systems, 2015,1(3):37-41.
[17]JAISWAL V, SINGH S, HARIKRISHNAN A R, et al. Competitive electrohydrodynamic and electro-solutal advection arrests evaporation kinetics of droplets[J]. Langmuir, 2020,36(30):8971-8982.
[18]SU S R, CHEN Y Y, LI K Y, et al. Electrohydrodynamically enhanced drying droplets for concentration of Salmonella bacteria prior to their detections using antibody-functionalized SERS-reporter submicron beads[J]. Sensors and Actuators B: Chemical, 2019,283:384-389.
[19]WANG P, SONG J X, RUAN H O, et al. Development and morphological characterization of ion wind in an inhomogeneous DC field[J]. AIP Advances, DOI: 10.1063/1.5085103.
[20]HU H, LARSON R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir, 2005,21(9):3963-3971.
[21]MASON E A, MCDANIEL E W. Transport properties of ions in gases[M]. Manhattan, USA: John Wiley & Sons, Inc, DOI: 10.1002/3527602852.
[22]KRYLOV E V, NAZAROV E G. Electric field dependence of the ion mobility[J]. International Journal of Mass Spectrometry, 2009,285(3):149-156.
[23]ZHAO L, ADAMIAK K. EHD flow in air produced by electric corona discharge in pinplate configuration[J]. Journal of Electrostatics, 2005,63(3/4):337-350.
[24]GOLYATINA R I, MAIOROV S A. Approximation of the characteristics of ion drift in parent gas[J]. Plasma Physics Reports, 2017,43(1):75-82.
[25]BEEGLE L W, KANIK I, MATZ L, et al. Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry[J]. International Journal of Mass Spectrometry, 2002,216(3):257-268.
 
PDF(6500 KB)

129

Accesses

0

Citation

Detail

Sections
Recommended

/