针对多媒体业务具有不同QoS要求的问题,提出了一种新的多业务类QoS星座网络路由算法,其目标是在保证高优先级业务性能的同时,提高低优先级业务的性能,从而高效利用网络整体资源.该算法以多种QoS要求和动态链路状态为依据,给出分类的链路代价.引入关键链路的概念,并将链路利用率、剩余带宽、期望负载结合起来定义分类的关键链路代价增量,尽可能减少业务类之间的影响,合理分配网络资源.通过VC和Matlab混合编程建立卫星网络和全球业务仿真环境,并对本文和其他三种路由算法进行仿真试验.结果表明,本文算法不仅保证了高优先级业务的平均路径时延、平均阻塞概率以及平均吞吐率,而且低优先级业务的以上性能具有显著提高,从而有效提高了网络负载均衡性和资源利用率.
Abstract
To solve the different QoS requirements of multimedia traffic, a novel multiclass QoS routing algorithm(MQoSR) for LEO satellite networks was proposed. The ultimate goal of MQoSR was to maximize network resource efficiency by ensuring performance of highpriority traffic classes and to improve the excution of lowpriority classes. The classification link cost was presented based on multiple QoS requirments and dynamic link status. The concept of critical link was introduced to reduce the influence between traffic classes and allocate network resources efficiently, and the incremental cost of critical link was defined by link utilization, residual bandwidth and load expectation. Simulation environment of satellite network and global traffic was built up by VC and Matlab. MQoSR and three other routings were simulated. The experimental results show that the MQoSR not only guarantees average path delay, blocking probability and throughput of high priority class traffic, but also greatly improves these performance of low priority class traffic. The load balance and the network resource utilization are enhanced effectively.
关键词
多业务类 /
服务质量 /
链路代价 /
关键链路 /
代价增量
{{custom_keyword}} /
Key words
multiclass /
quality of service /
link cost /
critical link /
incremental cost
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1]Fernandez J C, Taleb T, Guizani M, et al. Bandwidth aggregationaware dynamic QoS negotiation for realtime video streaming in nextgeneration wireless networks[J]. IEEE Transactions on Multimedia, 2009, 11(6):1082-1093.
[2]Urquizo Medina A N, Qiang G. QoS routing for LEO satellite networks[C]∥Proceedings of Joint International Conference on Pervasive Computing and the NetworkedWorld. Heidelberg:Springer Verlag, 2013: 482-494.
[3]吴国强,孙兆伟,吴宝林. 编队飞行微小卫星星间直序扩频通信系统仿真[J]. 江苏大学学报:自然科学版, 2010,32(2): 215-220.
Wu Guoqiang, Sun Zhaowei, Wu Baolin. Simulation of intersatellite direct spread spectrum communication system for formationflying microsatellite[J]. Journal of Jiangsu University:Natural Science Edition, 2010, 32(2): 215-220. (in Chinese)
[4]Werner M.A dynamic routing concept for ATM based satellite personal communication networks[J]. IEEE Journal on Selected Areas in Communications, 1997, 15(8): 1636-1648.
[5]Papapetrou E, Karapantazis S, Dimitriadis G, et al. Satellite handover techniques for LEO networks[J]. International Journal of Satellite Communications and Networking, 2004, 22(2): 231-245.
[6]Papapetrou E, Karapantazis S, Pavlidou F N. Distributed ondemand routing for LEO satellite systems[J]. Computer Networks, 2007, 51(15): 4356-4376.
[7]Lu Yong, Sun Fuchun, Zhao Youjian. Virtual topology for LEO satellite networks based on Earthfixed footprint mode[J]. IEEE Communications Letters, 2013, 17(2): 357-360.
[8]Karapantazis S, Papapetrou E, Pavlidou F N. Multiservice ondemand routing in LEO satellite networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(1): 107-112.
[9]Taleb T, Mashimo D, Jamalipour A, et al. Explicit load balancing technique for NGEO satellite IP networks with onboard processing capabilities[J]. IEEE/ACM Transactions on Networking, 2009, 17(1): 281-293.
[10]Chen Chao, Ekici Eylem. A routing protocol for hierarchical LEO/MEO satellite IP networks[J]. Wireless Networks, 2005, 11(4): 507-521.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家“863”计划项目(2010AAxxx0404,2009AAxxx404,2008AAxxx405)
{{custom_fund}}