为提高某商用车的行驶平顺性,对某商用车悬架系统参数进行了优化. 基于空气弹簧试验数据拟合得到其刚度特性曲线,建立前后悬架及整车多体动力学模型,仿真得出该车随机输入工况和脉冲输入工况平顺性. 搭建悬架系统参数化的多平台联合仿真模型,通过全域灵敏度分析得出悬架系统设计参数对平顺性的影响程度. 建立整车平顺性多目标响应面近似模型,利用多目标遗传优化算法进行参数可行域内寻优. 结果表明:在随机输入工况下,车速为100 km/h时,驾驶员处和乘客处加权加速度均方根值分别减小了12.50%和29.71%;在脉冲输入工况下,车速为30 km/h驾驶员处和车速为20 km/h乘客处的垂向最大加速度分别减小了14.69%和31.28%,优化效果明显.
Abstract
To improve the ride comfort of commercial vehicle, the parameters of the suspension system of commercial vehicle were optimized. Based on the actual test data of the air spring, the stiffness characteristic curve was fitted, and the multi-body dynamic model of the front and rear suspension and the entire vehicle was established. The smoothness of the vehicle under random input and pulse input conditions was simulated. The parametric multi-platform co-simulation model of the suspension system was built, and the degree of influence of the design parameters of the suspension system on ride comfort was obtained through the global sensitivity analysis. The multi-objective response surface approximation model for vehicle ride comfort was established, and the multi-objective genetic optimization algorithm was used to optimize the parameters in the feasible region. The results show that under the random input conditions, the root mean square(RMS) values of the weighted acceleration at the driver and passenger positions are respectively reduced by 12.50% and 29.71% when the vehicle speed is 100 km/h. Under pulse input conditions, the maximum vertical accelerations at the driver and passenger positions are respectively reduced by 14.69% and 31.28% when the vehicle speeds are respective 20 km/h and 30 km/h, and the optimization effect is obvious.
关键词
商用车 /
空气弹簧悬架 /
平顺性 /
多目标优化 /
灵敏度分析
{{custom_keyword}} /
Key words
commercial vehicle /
air spring suspension /
ride comfort /
multi-objective optimization /
sensitivity analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]顾信忠,李舜酩,程春. 负刚度悬架系统动力学特性及其性能研究[J]. 华中科技大学学报(自然科学版),2018,46(9):82-87.
GU X Z,LI S M,CHENG C. Research on dynamics properties and performance for negative stiffness suspension system [J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2018,46(9):82-87.(in Chinese)
[2]徐兴,施天玲,江昕炜,等. 准零刚度空气悬架系统建模与动态特性研究[J]. 振动与冲击,2021,40(24):205-211,292.
XU X,SHI T L,JIANG X W,et al. Modeling and dynamic characteristic analysis of a quasi-zero stiffness pneumatic suspension system[J]. Vibration and Shock, 2021,40(24):205-211,292.(in Chinese)
[3]江洪,周扬扬,王玉杰,等. 随机干扰下横向互联空气悬架车身高度控制[J]. 江苏大学学报(自然科学版),2017,38(4):383-388,395.
JIANG H, ZHOU Y Y, WANG Y J, et al. Body height control of vehicles with laterally interconnected air suspension system under pavement disturbance[J]. Journal of Jiangsu University(Natural Science Edition),2017,38(4):383-388,395.(in Chinese)
[4]SHI Q,PENG C W,CHEN Y K, et al. Robust kinema-tics design of MacPherson suspension based on a double-loop multi-objective particle swarm optimization algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2019,233(12):3263-3278.
[5]EL-ZOMOR H M,MOHAMED E S. Vehicle motion stability enhancement based on active camber angle control for a double wishbone suspension[J]. International Journal of Vehicle Structures & Systems,2020,12(2):134-139.
[6]陈鑫,兰凤崇,陈吉清,等. 微型电动汽车悬架系统设计与平顺性分析[J]. 重庆理工大学学报(自然科学),2018,32(8):24-31.
CHEN X, LAN F C, CHEN J Q, et al. Suspension system design and ride analysis of miniature electric vehicle [J]. Journal of Chongqing University of Technology(Natural Science),2018,32(8):24-31.(in Chinese)
[7]HE S L,CHEN K R,XU E Y,et al. Commercial vehicle ride comfort optimization based on intelligent algorithms and nonlinear damping[J]. Shock and Vibration,DOI:10.1155/2019/2973190.
[8]WANG G Y,XIE C W. Simulation analysis on ride comfort of hybrid heavy truck based on ADAMS[J]. Journal of Physics: Conference Series,DOI:10.1088/1742-6596/1865/4/042128.
[9]孙艺珊,吴志成. 三轴车悬架动力学参数的匹配[J]. 江苏大学学报(自然科学版),2018,39(3):249-253.
SUN Y S,WU Z C. Dynamic parameter matching schemes of three-axis vehicles suspension[J]. Journal of Jiangsu University(Natural Science Edition),2018,39(3):249-253.(in Chinese)
[10]MITRA A C,SONI T,KIRANCHAND G R,et al. Expe-rimental design and optimization of vehicle suspension system[J]. Materials Today: Proceedings,2015,2(4/5):2453-2462.
[11]王中兴. 基于多目标优化的轻型卡车悬架系统调校与试验研究[D]. 南京:南京理工大学,2018.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(51975295); 江苏省自然科学基金资助项目(BK20190462)
{{custom_fund}}