基于定容燃烧弹,利用高速纹影摄影和球形火焰扩展法,分析了不同燃空当量比(0.7~1.6)、初始温度(400,430,460 K)、初始压力(0.1,0.2,0.3 MPa)对正丁醇空气预混层流燃烧的影响.研究了正丁醇空气层流燃烧速度、火焰传播速度和拉伸率等关键层流燃烧特性参数的变化规律.结果表明:随着燃空当量比的增加,火焰前峰面稳定性变差,火焰传播速度和无拉伸火焰层流燃烧速度均呈现先增加后减小的趋势;随着初始温度的增加,火焰传播速度和无拉伸层流燃烧速度均增加,火焰前峰面稳定性下降;随着初始压力的增加,无拉伸层流燃烧速度和火焰传播速度均减小,火焰前峰面稳定性变差;火焰前峰面拉伸率随拉伸火焰传播速度的增加而逐渐减小.
Abstract
Based on the constant volume combustion bomb, the effects of equivalence ratio (0.7~1.6), initial temperature (400, 430 and 460 K) and initial pressure (0.1, 0.2 and 0.3 MPa) on butanol-air premixed laminar combustion were investigated by the ball type flame extension method with high speed schlieren photography technology. Several key parameters of laminar combustion of laminar combustion velocity, flame propagation velocity and stretch rate were analyzed in detail. The results show that the stability of flame front becomes worse with the increasing of fuel-air equivalence ratio, while the flame propagation velocity and the laminar burning velocity of unstretched flame are increased firstly with latter decreaseing. Both the flame propagation velocity and the unstretched laminar burning velocity are increased with the increasing of initial temperature, while the stability of flame front is decreased. The unstretched laminar burning velocity and the flame propagation velocity are decreased with the increasing of initial pressure, and the stability of flame front is deteriorated. In addition, the elongation of flame front surface is decreased with the increasing of flame propagation velocity.
关键词
正丁醇 /
定容燃烧弹 /
预混燃烧 /
层流燃烧速度 /
拉伸率
{{custom_keyword}} /
Key words
n-butanol /
constant volume combustion bomb /
premixed combustion /
laminar burning velocity /
stretch rate
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]WEI L J, YAO C D, HAN G P, et al. Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed
diesel engine[J].Energy, 2016, 95:223-232.
[2]PARK S H, SHIN D, PARK J Y. Effect of ethanol fraction on the combustion and emission characteristics of a dimethyl ether-ethanol dual-fuel reactivity controlled
compression ignition engine[J].Applied Energy, 2016,182: 243-252.
[3]LIU H F, LI S J, ZHENG Z Q, et al. Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust
gas recirculation (EGR) rates[J].Applied Energy, 2013,112: 246-256.
[4]RAJESH KUMAR B, SARAVANAN S. Use of higher alcohol biofuels in diesel engines: a review[J]. Renewa-ble and Sustainable Energy Reviews, 2016, 60: 84-115.
[5]ZHENG M, LI T, HAN X Y. Direct injection of neat n-butanol for enabling clean low temperature combustion in a modern diesel engine[J]. Fuel,2015,142:28-37.
[6]RAKOPOULOS D C, RAKOPOULOS C D, HOUNTA-LAS D T, et al. Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends[J]. Fuel,2010, 89: 2781-2790.
[7]ZHENG Z Q, LI C L, LIU H F, et al. Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol[J]. Fuel, 2015,141:109-119.
[8]HAN X Y, WANG M P, ZHENG M. Study of low temperature combustion with neat nbutanol on a common-rail diesel engine[C] ∥SAE Technical Paper Series. USA: SAE Publication Group, Paper Number:2015-01-0003.
[9]CHEN Z, LIU J P, WU Z K, et al. Effects of port fuel injection (PFI) of n-butanol and EGR on combustion and emissions of a direct injection diesel engine[J]. Energy
Conversion and Management, 2013,76:725-731.
[10]GAO T Y, READER G, TJONG J, et al. Energy efficiency comparison between butanol and ethanol combustion with diesel ignition[C]∥SAE Technical Paper Series. USA: SAE
Publication Group, Paper Number: 2015-01-0859.
[11]LIU H F, HUO M, LIU Y, et al. Time-resolved spray, flame, soot quantitative measurement fueling n-butanol and soybeanbio-diesel in a constant volume chamber under various
ambient temperatures[J]. Fuel, 2014, 133: 317-325.
[12]HUANG Z H, ZHANG Y, ZENG K, et al. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures[J]. Combustion and Flame,2006,146: 302-311.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(51406137); 汽车测控与安全四川省重点实验室开放基金资助项目(szjj2014-066); 四川省教育厅项目(14ZB0128); 西华大学重点基金资助项目(z1520313); 西华大学研究生创新基金资助项目(ycjj2016089)
{{custom_fund}}