Risk factors analysis and nomogram prediction model construction of nosocomial infection in stroke patients

GU Liqin1, CHEN Xiaoyi2, ZHANG Yanju1, CHEN Xiaojun1

Journal of Jiangsu University(Medicine Edition) ›› 2025, Vol. 35 ›› Issue (01) : 56-61.

PDF(1054 KB)
中国科技核心期刊
中国应用型核心期刊
中国医药卫生核心期刊
中国高校优秀科技期刊
美国《化学文摘(CA)》收录
美国《剑桥科学文摘(CSA)》收录
波兰《哥白尼索引(IC)》收录
日本科学技术振兴机构数据库(JST)收录
PDF(1054 KB)
Journal of Jiangsu University(Medicine Edition) ›› 2025, Vol. 35 ›› Issue (01) : 56-61.

Risk factors analysis and nomogram prediction model construction of nosocomial infection in stroke patients

  • GU Liqin1, CHEN Xiaoyi2, ZHANG Yanju1, CHEN Xiaojun1
Author information +

Abstract

Objective: To investigate the risk factors of hospital infection in stroke patients and construct a risk prediction model of nosocomial infection. Methods: A total of 300 stroke patients with nosocomial infection during hospitalization in the Department of Neurology and Neurosurgery of Affiliated Hospital of Nantong University from January 2020 to December 2023 were also selected (infection group), and another 300 stroke patients without nosocomial infection during the same period were selected (control group). The distribution of nosocomial infection and pathogenic bacteria were analyzed, and clinical characteristics of the two groups were compared. Multivariate Logistic regression was used to analyze the risk factors of nosocomial infection in stroke patients, and a nomogram model for predicting risk was established by incorporating R language, and the predictive effect of the model was evaluated. Results: The predominant nosocomial infection site of stroke patients was the respiratory system (62.67%, 188/300), the predominant pathogenic bacteria of nosocomial infection were Gram-negative bacteria (59.90%, 121/202), and the multidrug-resistant bacteria infection accouned for 34.16% (69/202). Compared with the control group, the infection group had higher proportion of cerebral hemorrhage, diabetes, hypertension, coronary heart disease, disturbance of consciousness, central venous catheters, ventilators, urinary catheters, and preventive use of antibiotics, body mass index(BMI)≥24 kg/m2 and hospitalization time≥14 d (P<0.05). Multivariate Logistic regression analysis showed that stroke type, hypertension, diabetes, BMI≥24 kg/m2, disturbance of consciousness, use of ventilator, indwelling urinary catheter, preventive use of antibiotics, and hospitalization time≥14 d were independent risk factors for nosocomial infection in stroke patients (P<0.05). A nomogram prediction model was constructed based on the regression results, and the area under ROC curve was 0.983 (95%CI: 0.975-0.991). The sensitivity and specificity was 0.940 and 0.937, respetictively. The Hosmer-Lemeshow test (χ2=5.454, P=0.708) indicated that the model had a good fit and predictive performance. Conclusion: The risk factors of nosocomial infection in stroke patients include stroke type, hypertension and diabetes, etc. The prediction model based on the risk factors could accurately predict the risk of nosocomial infection in stroke patients.

Key words

stroke / nosocomial infection / pathogenic bacteria / risk factors / prediction model / nomogram

Cite this article

Download Citations
GU Liqin1, CHEN Xiaoyi2, ZHANG Yanju1, CHEN Xiaojun1. Risk factors analysis and nomogram prediction model construction of nosocomial infection in stroke patients[J]. Journal of Jiangsu University(Medicine Edition), 2025, 35(01): 56-61

References

[1]石沪娟, 夏一航, 程怡然, 等. 1990年至2049年全球脑卒中疾病负担分析及预测[J]. 中国医学装备, 2024, 21(11): 141-150.
[2]Girotra T, Lekoubou A, Bishu KG, et al. A contemporary and comprehensive analysis of the costs of stroke in the United States[J]. J Neurol Sci, 2020, 410: 116643.
[3]《中国卒中中心报告 2022》编写组. 《中国卒中中心报告2022》概要[J]. 中国脑血管病杂志, 2024, 21(8): 565-576.
[4]HernndezSantos N, Wiesner DL, Fites JS, et al. Lung epithelial cells coordinate innate lymphocytes and immunity against pulmonary fungal infection[J]. Cell Host Microbe, 2019, 25(4): 630.
[5]连玉峰, 杨忠阔, 谢永明, 等. 急性脑出血患者外周血Tregs的变化与卒中后肺部感染的关系研究[J]. 中华医院感染学杂志, 2019, 29(6): 843-847.
[6]王树泉, 何鑫, 韩秀明. 缺血性脑卒中患者并发肺部感染的病原菌分布、危险因素及血清因子水平分析[J]. 中国病原生物学杂志, 2020, 15(2): 214-216, 220.
[7]张庆敏, 耿纪超, 张艳萍. 脑卒中并发院内感染病原菌特点及血清免疫功能指标预警价值分析[J]. 中国病原生物学杂志, 2023, 18(12): 1466-1469, 1473.
[8]严梓予, 肖煌怡, 袁建坤, 等. 信息化管理平台在脑卒中患者中的应用现状[J]. 中国临床研究, 2024, 37(4): 611-615.
[9]王玉霞, 张振堂. 基于糖尿病综合管理队列的卒中风险预测模型的建立与应用[J]. 慢性病学杂志, 2022, 23(1): 16-19.
[10]王倩雯, 詹乐昌, 欧阳雨婷, 等. 恢复期脑卒中患者发生认知障碍的风险预测模型构建与评价[J]. 中国康复医学杂志, 2024, 39(12): 1810-1817.
[11]中华人民共和国卫生部. 医院感染诊断标准(试行)[J]. 中华医学杂志, 2001, 81(5): 314-320.
[12]周小燕, 彭舒, 任丽君. 老年脑卒中患者医院感染病原学及危险因素分析[J]. 中国病原生物学杂志, 2022, 17(4): 459-462.
[13]Li Y, Liu C, Xiao W, et al. Incidence, risk factors, and outcomes of ventilatorassociated pneumonia in traumatic brain injury: a metaanalysis[J]. Neurocrit Care, 2020, 32(1): 272-285.
[14]郑雨霖, 金雪文, 陈坤伦, 等. 炎症反应与COPD伴呼吸衰竭住院患者短期再入院的关系[J]. 新医学, 2024, 55(8): 631-640.
[15]黄忆鹤, 刘诗语, 廖俊, 等. 某三甲医院2017—2023年ICU患者病原菌分布及耐药性分析[J]. 中国抗生素杂志, 2024, 49(11): 1255-1262.
[16]侯盼飞, 张鑫, 祝丽晶, 等. 2019年我院重症监护病房病原菌分布及耐药性监测[J]. 中国实验诊断学, 2021, 25(12): 1785-1789.
[17]李中美, 俞周来, 吴力, 等. 神经内科重症监护室医院感染病原菌和影响因素分析[J]. 中华医院感染学杂志, 2020, 30(5): 685-688.
[18]鹿海龙, 杨丽. 万古霉素与美罗培南鞘内注射对高血压脑出血后颅内感染的疗效分析[J]. 中国现代医学杂志, 2021, 31(4): 92-96.
[19]刘晨霞, 阎田园, 王书会, 等. 脑卒中手术患者医院感染危险因素分析[J]. 中国消毒学杂志, 2019, 36(2): 133-135, 138.
[20]李军, 龚海花. 急性脑卒中患者并发院内感染的临床特点及危险因素[J]. 中国当代医药, 2022, 29(9): 62-65.
[21]Ye A, Li W, Zhou L, et al. Targeting pyroptosis to regulate ischemic stroke injury: Molecular mechanisms and preclinical evidences[J]. Brain Res Bull, 2020, 165: 146-160.
[22]Astrup LB, Skovgaard K, Rasmussen RS, et al. Staphylococcus aureus infected embolic stroke upregulates Orm1 and Cxcl2 in a rat model of septic stroke pathology[J]. Neurol Res, 2019, 41(5): 399-412.
[23]周小燕, 彭舒, 任丽君. 老年脑卒中患者医院感染病原学及危险因素分析[J]. 中国病原生物学杂志, 2022, 17(4): 459-462.
[24]Kato M, Toda A, YamamotoHonda R, et al. Association between Helicobacter pylori infection, eradication and diabetes mellitus[J]. J Diabetes Investig, 2019, 10(5): 1341-1346.
[25]张宁. 老年卒中患者医院获得性肺炎风险的预测[J]. 临床与病理杂志, 2022, 42(12): 2931-2937.

PDF(1054 KB)

114

Accesses

0

Citation

Detail

Sections
Recommended

/