基于3根模型梁试件的单调静力试验,对体外预应力钢-混凝土组合梁的受力性能进行了研究.研究表明:施加体外预应力可以有效提高组合梁的抗弯承载力,但试件的延性有所降低;试件纯弯段截面应变分布符合平截面假定;增大栓钉间距可以提高试件的极限变形能力,但对其抗弯承载力的影响不大;试件的抗剪连接程度越低,达到极限荷载时栓钉滑移值越大.结合试验并通过有限元建模,分析了混凝土强度等级、有效预应力、预应力筋线型、栓钉间距等对体外预应力组合梁受力性能的影响.最后,在考虑了预应力筋作用的基础上,提出了体外预应力组合梁抗弯承载力的简化计算方法,该方法可为体外预应力组合梁的设计计算提供参考.
Abstract
According to the monotonic loading experiment of three specimens, the static behavior of steel-concrete composite beams prestressed with external tendons was investigated. The results show that adding prestressing with external tendons can effectively improve the bending capacity of composite beams with reduced ductility at the same time. Strain distribution at the cross section in pure flexure zone remains approximately linear. Increasing the spacing of studs welded on steel beams can improve ultimate deformability of prestressed beams with slight effect on bending capacity. With the decrease of shear connection degree, the slip of studs increases at ultimate load. According to different finite element models of composite beams prestressed with external tendons, the effects of concrete compressive strengthen, effective prestress, external tendons profile and studs spacing on the static behavior of composite beams were discussed. A simplified calculation method of bending capacity was proposed based on prestress effect to provide references for the design and calculation of composite beams prestressed with external tendons.
关键词
钢-混凝土组合梁 /
体外预应力筋 /
静力性能 /
栓钉 /
抗弯承载力
{{custom_keyword}} /
Key words
steel-concrete composite beams /
external tendon /
static behavior /
studs /
bending capacity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]薛伟辰,何池,王骅,等.新型预应力组合梁的力学性能[J].同济大学学报:自然科学版,2003,31(3):268-272.
Xue Weichen, He Chi, Wang Hua, et al. Mechanics properties of newtype prestressed composite beams [J]. Journal of Tongji University:Natural Science, 2003, 31(3): 268-272. (in Chinese)
[2]余志武,郭风琪.部分预应力钢-混凝土连续组合梁负弯矩区裂缝宽度试验研究[J].建筑结构学报,2004,25(4):55-59.
Yu Zhiwu, Guo Fengqi. Experimental study of crack width in negative bending region of partially prestressed continuous steelconcrete composite beams [J]. Journal of Building Structures, 2004, 25(4): 55-59. (in Chinese)
[3]Barth K E, Roberts N R. Flexural capacity of compact composite Igirders in positive bending[J]. Journal of Bridge Engineering, 2009,14(4):238-246.
[4]Zhou An.Flexural stiffness of steelprestressed concrete composite beam [J]. Key Engineering Materials, 2008, 400/401/402: 843-848.
[5]白丽丽.预应力钢-混凝土组合梁设计理论研究[D]. 上海: 同济大学土木工程学院, 2009.
[6]Xue W C, Ding M, He C, et al. Longterm behavior of prestressed composite beams at service loads for one year[J]. Journal of Structural Engineering, 2008, 134(6):930-937.
[7]Albrecht P, Lenwari A. Fatigue strength of repaired prestressed composite beams[J]. Journal of Bridge Engineering, 2008,13(4):409-417.
[8]Chen S M, Gu P. Load carrying capacity of composite beams prestressed with external tendons under positive moment[J]. Journal of Constructional Steel Research, 2005, 61(4): 515-530.
[9]Nie J G, Cai C S, Zhou T R, et al. Experimental and analytical study of prestressed steelconcrete composite beams considering slip effect [J]. Journal of Structural Engineering, 2007, 133(4): 530-540.
[10]Gupta V K, Okui Y, Inaba N, et al. Effect of concrete crushing of flexural strengthen of steelconcrete composite girders[J]. Doboku Gakkai Ronbunshuu A, 2007,63(3):475-485.
[11]Ye X F, Hu S W. Experimental research on flexural performance of prestressed composite beam with partial shear connection[J]. Applied Mechanics and Materials, 2011,80/81:596-600.
[12]Lorenc W, Kubica E. Behavior of composite beams prestressed with external tendons: experimental study [J]. Journal of Constructional Steel Research, 2006, 62(12): 1353-1366.
[13]Chen S M, Wang X D, Jia Y L. A comparative study of continuous steelconcrete composite beams prestressed with external tendons: experimental investigation [J]. Journal of Constructional Steel Research, 2009, 65(7): 1480-1489.
[14]European Committee for Standardization.BS EN 1994-2 Eurocode 4, Design of Composite Steel and Concrete Structures-Part 2: General Rules and Rules for Bridges [S]. London:BSI,2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(50978193); 上海市科委重点项目(09231200400)
{{custom_fund}}