针对轨道不平顺引起地铁车辆车体壁板振动产生的车内低频结构噪声问题,建立了铝合金地铁车辆车体结构有限元模型、车内声场边界元模型和车辆轨道耦合模型,进行了动力学分析,得到轨道随机不平顺激励下,车体所受激励载荷并施加于车体结构的有限元模型,在ANSYS软件中进行了车体结构谐响应分析,得到车体振动响应.将得到的车体振动响应作为边界条件传递给车内声场边界元模型,在SYSNOISE软件中计算了频率0~200 Hz范围内车内不同位置的低频结构噪声分布特性.结果表明:车内最大声压级超过75 dB;车体结构特点以及激励载荷情况直接影响车内结构噪声特性;减少轮轨激励载荷或优化车体结构,均可降低车内结构噪声.
Abstract
To analysis the interior low-frequency structural noise caused by car body panels vibration from track irregularities, the finite element model of aluminum alloy metro vehicle car body and the sound field boundary element model of car interior space were established. The dynamic analysis was performed based on the proposed models of vehicletrack coupled dynamic system.According to the dynamic loads on involved positions of body structure and the finite element harmonic response analysis method in ANSYS software, the vehicle structure body vibration responses under random irregular rail-track actuations were achieved. The vehicle body structure vibration responses were transfered as boundary conditions to the boundary element model of car interior sound field in SYSNOISE software. The interior sound field characteristics were predicted in the range of 0-200 Hz at different inside place of car. The results indicate that the maximum inner sound pressure level is more than 75 dB.The interior lowfrequency structural noise characteristics in car body of aluminum alloy metro is influenced directly by car body structure characteristics and actuating loads.The interior structural noise can be reduced by decreasing rail-track actuations or optimizing vehicle body structure.
关键词
地铁车辆 /
铝合金 /
车内噪声 /
预测 /
有限元/边界元
{{custom_keyword}} /
Key words
metro vehicle /
aluminum alloy /
interior noise /
prediction /
FEM/BEM
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Marburg S. Developments in structuralacoustic optimization for passive noise control [J]. Archives of Computational Methods in Engineering, 2002,9(4):291-370.
[2]Nefske D J,Sung S H. Vehicle interior acoustic design using finite element methods[J]. International Journal of Vehicle Design, 1985, 6 (1):24-40.
[3]Kompella M S,Bernhard R J. Variation of structuralacoustic characteristics of automotive & vehicle [J]. Noise Control Engineering Journal, 1996, 44 (2): 93-99.
[4]Kim S H,Lee J M, Sung M H. Structuralacoustic modal coupling analysis and application to noise reduction in a vehicle passenger compartment [J]. Journal of Sound and Vibration,1999,225(5):989-999.
[5]刘海波,左言言,周晋花,等.汽车乘坐室室内声场的研究[J].噪声与振动控制,2007(2):59-61.
Liu Haibo, Zuo Yanyan, Zhou Jinhua, et al. Research on interior sound field of passenger compartment [J].Noise and Vibration Control, 2007(2):59-61.
[6]刘晓明,王晓宇,陈慈慧. 流固耦合船舶舱室中低频噪声数值分析[J]. 船舶力学,2008,12(5):812-818.
Liu Xiaoming, Wang Xiaoyu, Chen Cihui. Numerical analysis of low and middle frequency noise in ship cabin using fluidstructure coupling[J]. Journal of Ship Mechanics,2008,12(5):812-818. (in Chinese)
[7]戚方好.城市轨道客车车内噪声预测控制与优化技术研究[D].上海:上海交通大学机械系统与振动国家重点实验室,2007.
[8]耿烽,左言言,李树栋.铝合金A型地铁轻量化车体结构与有限元建模[J].制造业自动化,2010,32(11):169-171.
Geng Feng, Zuo Yanyan, Li Shudong. Lightweight carbody structure and finite element modeling of the aluminum alloy Atype metro vehicle[J].Manufacturing Automation,2010,32(11):169-171. (in Chinese)
[9]Geng Feng,Zuo Yanyan,Yuan Jianning,et al. Static strength and mode simulation for the Atype aluminum alloy car body structure of metro vehicle[C]∥Proceedings of the International Conference on Advanced Technology of Design and Manufacture.London:The Institution of Engineering and Technology,2010:22-25.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
江苏省自然科学基金资助项目(BK2009212); 高等学校博士学科点专项基金资助项目(20103227110009)
{{custom_fund}}