融入智能网联汽车的混行交通流混沌特性

梁军1, 杨航1, 任彬彬1, 陈小波2, 陈龙1, 杨相峰3

江苏大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (4) : 373-380.

PDF(2211 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(2211 KB)
江苏大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (4) : 373-380. DOI: 10.3969/j.issn.1671-7775.2024.04.001
车辆工程

融入智能网联汽车的混行交通流混沌特性

作者信息 +

Chaotic characteristics of mixed traffic flow integrated with intelligent connected vehicle

Author information +
文章历史 +

摘要

为了研究混行交通流混沌特性、辨析影响混行车队混沌程度的因素,在传统交通流理论基础上,利用Cao方法和改进的Cao方法确定混行交通流延迟时间和嵌入维数,对混行交通流序列进行相空间重构并通过计算最大Lyapunov指数判定其混沌特性.对混行交通流中智能网联汽车(intelligent connected vehicle,ICV)协同自适应巡航(cooperative adaptive cruise control,CACC)车辆比例及延迟时间关键参数进行影响分析.结果表明:在跟驰过程中车头间距序列的最大Lyapunov指数小于0时,混行交通流存在混沌;CACC车辆比例增加能够减弱混沌的时间区域,比如当CACC车辆比例达到0.6时,跟驰系统趋于稳定;CACC车辆的延迟时间对混沌的影响显著,保持低通信延迟才能发挥CACC车辆的作用,从而有效抑制混沌.

Abstract

To investigate the chaotic characteristics of mixed traffic flow and discern the factors influencing the degree of chaos in mixed traffic platoons, the Cao method and the improved Cao method were employed based on the traditional traffic flow theory to determine the delay time and embedding dimension of the mixed traffic flow. The phase space of mixed traffic flow sequences was reconstructed to determine the chaotic characteristics by calculating the maximum Lyapunov exponent. The influential parameters of the proportion of intelligent connected vehicle (ICV) using cooperative adaptive cruise control (CACC) and the delay time in mixed traffic flow were analyzed. The results show that when the maximum Lyapunov exponent of the headway sequence during the car-following process is less than zero, chaos exists in the mixed traffic flow. Increasing the proportion of CACC vehicles can mitigate chaos in certain time intervals. The car-following system tends to be stable when the proportion of CACC vehicles reaches 0.6. The delay time of CACC vehicles significantly affects chaos, and maintaining low communication delays is essential for CACC vehicles to effectively suppress chaos.

关键词

智能网联汽车 / 混行交通流 / 混沌特性 / 相空间重构 / 李雅普诺夫指数

Key words

 intelligent connected vehicle / mixed traffic flow / chaotic characteristics / phase space reconstruction / Lyapunov exponent

引用本文

导出引用
梁军1, 杨航1, 任彬彬1, . 融入智能网联汽车的混行交通流混沌特性[J]. 江苏大学学报(自然科学版), 2024, 45(4): 373-380 https://doi.org/10.3969/j.issn.1671-7775.2024.04.001
LIANG Jun1, YANG Hang1, REN Binbin1, et al. Chaotic characteristics of mixed traffic flow integrated with intelligent connected vehicle[J]. Journal of Jiangsu University(Natural Science Edition), 2024, 45(4): 373-380 https://doi.org/10.3969/j.issn.1671-7775.2024.04.001

参考文献

[1]秦严严,王昊,王炜,等. 混有协同自适应巡航控制车辆的异质交通流稳定性解析与基本图模型[J]. 物理学报, 2017,66(9):252-261.
QIN Y Y, WANG H, WANG W, et al. Stability analysis and fundamental diagram of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles[J]. Acta Physica Sinica, 2017,66(9):252-261.(in Chinese)
[2]ZHU W X, ZHANG H M. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model[J]. Physica A: Statistical Mechanics and its Applications, 2018, 496: 274-285.
[3]LIU H, KAN X G, SHLADOVER S E, et al. Impact of cooperative adaptive cruise control on multilane freeway merge capacity[J]. Journal of Intelligent Transportation Systems, 2018,22(3):263-275.
[4]胡明伟,张芷铭,陈湘生. 智能网联车辆混行交通流效益研究[J]. 系统仿真学报,2021,33(9):2270-2278.
HU M W, ZHANG Z M, CHEN X S. Research on benefits of mixed traffic flow of intelligent connected vehicles[J]. Journal of System Simulation,2021,33(9):2270-2278.(in Chinese)
[5]CONG S S, WANG W S, LIANG J, et al. An automatic vehicle avoidance control model for dangerous lane-changing behavior[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(7):8477-8487.
[6]LI Y, LI Z B, WANG H, et al. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways[J]. Accident,Analysis and Prevention, 2017,104:137-145.
[7]秦严严,王昊. 智能网联车辆交通流优化对交通安全的改善[J]. 中国公路学报, 2018,31(4):202-210.
QIN Y Y, WANG H. Improving traffic safety via traffic flow optimization of connected and automated vehicles[J]. China Journal of Highway and Transport, 2018,31(4):202-210.(in Chinese)
[8]ARVIN R, KHATTAK A J, KAMRANI M, et al. Safety evaluation of connected and automated vehicles in mixed traffic with conventional vehicles at intersections[J]. Journal of Intelligent Transportation Systems, 2021,25(2):170-187.
[9]ZHENG F F, LIU C, LIU X B, et al. Analyzing the impact of automated vehicles on uncertainty and stability of the mixed traffic flow[J]. Transportation Research Part C: Emerging Technologies, 2020,112:203-219.
[10]姚志洪,金玉婷,王思琛,等. 混入智能网联汽车的交通流稳定性与安全性分析[J]. 中国安全科学学报, 2021,31(10):136-143.
YAO Z H, JIN Y T, WANG S C, et al. Stability and safety analysis of traffic flow mixed with ICV[J]. China Safety Science Journal, 2021,31(10):136-143.(in Chinese)
[11]VEGAMOOR V, RATHINAM S, DARBHA S. String stability of connected vehicle platoons under lossy V2V communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(7):8834-8845.
[12]MILANS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014,48:285-300.
[13]XIAO L, WANG M, VAN AREM B. Realistic car-following models for microscopic simulation of adaptive and cooperative adaptive cruise control vehicles[J]. Transportation Research Record, 2017,2623:1-9.
[14]SHLADOVER S E, SU D Y, LU X Y. Impacts of coo-perative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record, 2012,2324:63-70.
[15]XIAO L, WANG M, SCHAKEL W, et al. Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks[J]. Transportation Research Part C: Emerging Technologies, 2018,96:380-397.
[16]TAKENS F. Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981,898:366-381.
[17]KIM H S, EYKHOLT R, SALAS J D. Nonlinear dyna-mics, delay times, and embedding windows[J]. Physica D: Nonlinear Phenomena, 1999,127(1/2):48-60.
[18]CAO L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997,110(1/2):43-50.
[19]ZHOU S, WANG X Y, WANG Z, et al. A novel me-thod based on the pseudo-orbits to calculate the largest Lyapunov exponent from chaotic equations[J].Chaos,DOI:10.1063/1.5087512.

基金

国家自然科学基金资助项目(61773184); 国家重点研发计划项目(2018YFB1600503); 江苏省“六大人才高峰”高层次人才计划项目(2015-DZXX-048)

PDF(2211 KB)

Accesses

Citation

Detail

段落导航
相关文章

/