带电射流非稳态破碎的可视化试验

王贞涛1,2, 陈永钟1, 孔茜1, 杨诗琪1, 岑旗刚1

江苏大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (2) : 213-219.

PDF(4894 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(4894 KB)
江苏大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (2) : 213-219. DOI: 10.3969/j.issn.1671-7775.2024.02.013
能源与动力工程

带电射流非稳态破碎的可视化试验

作者信息 +

Visualization experiment of instability breakup for electrified jets in electrostatic atomization

Author information +
文章历史 +

摘要

 采用高速数码相机对毛细管带电射流破碎形态的演化过程进行了可视化研究,探讨了大流量下带电射流破碎的基本形态及射流不稳定破碎模式的转变,分析了物性参数、电压及液体流量对带电射流破碎模式的影响.采用半球形毛细管喷嘴研究锥射流模式向简单射流模式演化的过程,采用普通毛细管喷嘴对比研究去离子水和乙醇的静电简单射流雾化模式.结果表明:在特定电压下,随着流量增加,锥射流模式可以逐渐过渡为简单射流模式;当初始状态为射流时,随着电压增加,大流量下的去离子水静电雾化射流破碎模式主要为曲张不稳定破碎和鞭动不稳定破碎;表面张力较小的无水乙醇更容易产生破碎,还出现了鞭动辅助分叉模式和枝状破碎模式.

Abstract

The high-speed digital camera was used to visualize the evolution of electrostatic atomization, where the capillary was considered as spraying nozzle. The morphology of electrostatic atomization pattern and the transformation of the instability breakup pattern at high flow rates were investigated, and the effects of physical parameters, applied voltage and liquid flow rate on the instability breakup of electrified jets in electrostatic atomization were explored. The evolution from cone-jet to simple-jet was studied using hemispherical capillary, and simple-jet atomization of deionized water and ethanol was conducted using common capillary. The results indicate that cone-jet mode can be gradually transfered into simple-jet mode with the increasing of flow rate at specific voltage. For the initial state of jetting, with the increasing of external potential, the instability breakup modes of simple-jet for deionized water at high flow rates are mainly varicose instability breakup and kink instability breakup. Anhydrous ethanol with low surface tension is easy to be overcome by electric force and easier to break, and the whipping assisted bifurcation and ramified modes also appear.

关键词

毛细管喷嘴 / 静电雾化 / 简单射流 / 曲张不稳定破碎 / 鞭动不稳定破碎

Key words

capillary nozzle / electrostatic atomization / simple-jet / varicose instability breakup / kink instability breakup

引用本文

导出引用
王贞涛1, 2, 陈永钟1, . 带电射流非稳态破碎的可视化试验[J]. 江苏大学学报(自然科学版), 2024, 45(2): 213-219 https://doi.org/10.3969/j.issn.1671-7775.2024.02.013
WANG Zhentao1, 2, CHEN Yongzhong1, et al. Visualization experiment of instability breakup for electrified jets in electrostatic atomization[J]. Journal of Jiangsu University(Natural Science Edition), 2024, 45(2): 213-219 https://doi.org/10.3969/j.issn.1671-7775.2024.02.013

参考文献

[1]JAWOREK A, KRUPA A. Classification of the modes of EHD spraying[J]. Journal of Aerosol Science, 1999,30(7):873-893.
[2]WANG Q S, WANG Z T, JIANG Y M, et al. Experimental study of electro-spraying modes of deionized water in atmospheric environment[J]. Experimental and Computational Multiphase Flow, 2021,3(1):38-46.
[3]王其锶,王贞涛,杨诗琪,等. 双毛细管静电雾化模式演化过程分析[J]. 江苏大学学报(自然科学版), 2022,43(1):38-44.
WANG Q S, WANG Z T, YANG S Q, et al. Analysis of evolution process of twin-capillary electro-spraying regime[J]. Journal of Jiangsu University (Natural Science Edition), 2022,43(1):38-44.(in Chinese)
[4]ROSELL-LLOMPART J, GRIFOLL J, LOSCERTALES I G. Electrosprays in the cone-jet mode: from Taylor cone formation to spray development[J]. Journal of Aerosol Science, 2018,125:2-31.
[5]吴伟,唐勇,袁硕,等. 管道对称性对后混合磨料水射流喷嘴流场的影响[J]. 流体机械,2022,50(8):97-104.
WU W, TANG Y, YUAN S, et al. The effect of pipe symmetry on nozzle flow field of post mixed abrasive water jet[J]. Fluid Machinery, 2022,50(8):97-104.(in Chinese)
[6]袁聪,朱丽莎,杜尊令,等. 水压锥阀空化射流流场结构与流量特性的相关性研究[J]. 流体机械,2022,50(1):92-99.
YUAN C, ZHU L S, DU Z L, et al. Study on correlation between cavitation jet field structure through water poppet valve and flow characteristics[J]. Fluid Machinery, 2022,50(1):92-99.(in Chinese)

[7]江旭丽,甘云华,江政纬,等. 乙醇-生物柴油液滴的荷电与破碎特性分析[J]. 高电压技术,2019,45(12):4115-4121.
JIANG X L, GAN Y H, JIANG Z W, et al. Analysis on charge and breakup characteristics of ethanol-biodiesel droplets[J]. High Voltage Engineering, 2019,45(12):4115-4121.(in Chinese)
[8]JIANG Z W, GAN Y H, SHI Y L. An improved model for prediction of the cone-jet formation in electrospray with the effect of space charge[J]. Journal of Aerosol Science, DOI: 10.1016/j.jaerosci.2019.105463.
[9]GAN-CALVO A M, DVILA J, BARRERO A. Current and droplet size in the electrospraying of liquids. Scaling laws[J]. Journal of Aerosol Science, 1997,28(2):249-275.
[10]HARTMAN R P A, BRUNNER D J, CAMELOT D M A, et al. Jet break-up in electrohydrodynamic atomization in the cone-jet mode[J]. Journal of Aerosol Science, 2000,31(1):65-95.
[11]刘秀娟,张慧春.不同雾化方式喷雾场的数值分析与试验验证[J].排灌机械工程学报,2023,41(9):959-965.
LIU X J, ZHANG H C. Numerical analysis and test veri-fication of spray field of different atomization nozzle modes[J]. Journal of Drainage and Irrigation Machinery Engineering, 2023,41(9):959-965.(in Chinese)
[12]高雪晴,王玎,李鑫德,等.离心雾化喷头结构优化及雾滴沉积特性[J].排灌机械工程学报,2023,41(7):749-756.
GAO X Q,WANG D,LI X D,et al.Structure optimization and droplet deposition characteristics of centrifugal atomizing nozzle[J].Journal of Drainage and Irrigation Machinery Engineering, 2023,41(7):749-756.(in Chinese)
[13]WANG Z T, WANG Q S, LI B, et al. An experimental investigation on cone-jet mode in electrohydrodynamic (EHD) atomization[J]. Experimental Thermal and Fluid Science, DOI:  10.1016/j.expthermflusci.2020.110054.
[14]AGOSTINHO L L F, TAMMINGA G, YURTERI C U,et al. Morphology of water electrosprays in the simple-jet mode[J]. Physical Review: E, DOI:10.1103/PhysRevE.86.066317.
[15]AGOSTINHO L L F, YURTERI C U, FUCHS E C, et al. Monodisperse water microdroplets generated by electrohydrodynamic atomization in the simple-jet mode[J]. Applied Physics Letters, DOI:10.1063/1.4729021.
[16]AGOSTINHO L L F, BOS B, KAMAU A, et al. Simple-jet mode electrosprays with water. Description, characterization and application in a single effect evaporation chamber[J]. Journal of Aerosol Science, 2018,125:237-250.
[17]WANG Z T, MITRAINOVIC' A M, WEN J Z. Investigation on electrostatical breakup of bio-oil droplets[J]. Energies, 2012,5(11):4323-4339.
[18]李银,贺小峰,余威. 喷嘴结构对非稳态射流推力影响的试验研究[J]. 流体机械, 2023,51(9):1-6.
LI Y, HE X F, YU W. The effect of nozzle configuration on the thrust characteristics of unsteady jets[J]. Fluid Machinery, 2023,51(9):1-6.(in Chinese)

[19]YANG W, DUAN H, LI C, et al. Crossover of varicose and whipping instabilities in electrified microjets[J]. Physical Review Letters,DOI:10.1103/PhysRevLett.112.054501.
[20]XIA H H, ISMAIL A, STAR J P W, et al. Scaling laws for transition from varicose to whipping instabilities in electrohydrodynamic jetting[J]. Physical Review Applied, DOI:10.1103/PhysRevApplied.12.014031.
[21]YANG S Q, WANG Z T, KONG Q, et al. Varicose-whipping instabilities transition of an electrified micro-jet in electrohydrodynamic cone-jet regime[J]. Internatio-nal Journal of Multiphase Flow, DOI:10.1016/j.ijmultiphaseflow.2021.103851.
[22]WANG Z T, LI R, TIAN L, et al. Visualization of periodic emission of drops with micro-dripping mode in electrohydrodynamic (EHD) atomization[J]. Experimental Thermal and Fluid Science, 2019,105,307-315.

基金

江苏省自然科学基金资助项目(BK20171301); 先进反应堆工程与安全教育部重点实验室开放基金资助项目(ARES-2022-05)

PDF(4894 KB)

Accesses

Citation

Detail

段落导航
相关文章

/