数据驱动的学校周边道路拥堵识别

景鹏, 顾倩, 杜刘洋

江苏大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (2) : 141-146.

PDF(1581 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(1581 KB)
江苏大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (2) : 141-146. DOI: 10.3969/j.issn.1671-7775.2024.02.003
车辆工程

数据驱动的学校周边道路拥堵识别

作者信息 +

Data driven identification of road congestion around schools

Author information +
文章历史 +

摘要

为定量分析多个中小学周边道路拥堵情况,针对性地改善学校周边拥堵状况,对比通学时期与非通学时期的交通拥堵数据.建立学校周边道路拥堵指标,通过拥堵评价函数,分析各道路受周边学校出行影响的程度,识别重点拥堵道路.提出了一种基于地图开放平台获取交通大数据的算法,对南京主城区79所中小学周边道路进行实例分析,给出了各道路受学校出行影响的拥堵值.结果表明:在通学期间交通整体拥堵程度高于非通学时期,通学时期平均拥堵指数为1.973,非通学时期平均拥堵指数为1.664,通学时期比非通学时期平均拥堵指数提高了18.57%.

Abstract

To quantitatively analyze the road congestion around primary and secondary schools and improve the congestion around schools, the traffic congestion data in school season and non-school season were compared. The congestion index of the road around school was established, and the congestion evaluation function was constructed. The influence degree of each road by school travel was analyzed, and the key congested roads were identified. An algorithm for obtaining traffic big data based on the map open platform was proposed. The roads around 79 primary and secondary schools in the main urban area of Nanjing were analyzed, and the congestion value of each road affected by school travel was given. The results show that the overall congestion degree in school season is higher than that in non-school season, and the average congestion index is 1.973 in school season, which is 18.57% higher than that of 1.664 in non-school season.

关键词

学校道路 / 拥堵指数 / 大数据 / 拥堵识别 / 地图平台

Key words

school road / congestion index / big data / congestion identification / map platform

引用本文

导出引用
景鹏, 顾倩, 杜刘洋. 数据驱动的学校周边道路拥堵识别[J]. 江苏大学学报(自然科学版), 2024, 45(2): 141-146 https://doi.org/10.3969/j.issn.1671-7775.2024.02.003
JING Peng, GU Qian, DU Liuyang. Data driven identification of road congestion around schools[J]. Journal of Jiangsu University(Natural Science Edition), 2024, 45(2): 141-146 https://doi.org/10.3969/j.issn.1671-7775.2024.02.003

参考文献

[1]高德地图智慧交通业务中心数据分析团队.2019年度中国主要城市交通分析报告[EB/OL]. (2020-02-25)[2022-02-18].https:∥report.amap.com/share.do?id=8b04ff737067a78601707b2ba0542d72.
[2]LU M, SUN C, ZHENG S Q. Congestion and pollution consequences of driving-to-school trips: a case study in Beijing[J]. Transportation Research Part D:Transport and Environment, 2017,50:280-291.
[3]LIU Y, JI Y J, SHI Z B, et al. Investigating the effect  of the spatial relationship between home, workplace and school on parental chauffeurs′ daily travel mode choice[J]. Transport Policy,2018,69:78-87.
[4]庞明宝,裴亚男,张宁. 中小学门口道路上学混合交通流的综合仿真[J]. 系统仿真学报, 2018,30(3):1162-1170,1177.
PANG M B, PEI Y N, ZHANG N.Integrated simulation of mixed traffic flow on elementary and middle school gate′s road when students going to school[J]. Journal of System Simulation,2018,30(3):1162-1170,1177.(in Chinese)
[5]王俊,刘丹,陶小伢. 常州解决老城区学校周边交通拥堵的探索与实践[C]∥2019城市发展与规划论文集. DOI:10.16799/j.cnki.csdqyfh.2020.04.005.
[6]YANG X F, LIU H, HE K B. The significant impacts on traffic and emissions of ferrying children to school in Beijing[J]. Transportation Research Part D: Transport and Environment, 2016,47:265-275.
[7]ZHANG Q Q,XU H L. Data driven analytics for school location impacting urban traffic congestion[C]∥2017 4th International Conference on Transportation Information and Safety.Piscataway,USA:IEEE,2017:883-888.
[8]CHEN Y Y,CHEN C,WU Q,et al. Spatial-temporal traffic congestion identification and correlation extraction using floating car data[J]. Journal of Intelligent Transportation Systems, 2021,25(3):263-280.
[9]张晓燕, 宋国华, 朱琳,等.基于FCD的城市路网常发性拥堵路段识别方法研究[J].交通信息与安全, 2014,32(1):5-9,15.
ZHANG X Y,SONG G H,ZHU L,et al. FCD-based identification method for urban recurrent traffic congestions[J].Journal of Transport Information and Safety, 2014,32(1):5-9,15.(in Chinese)
[10]SHEN Q,BAN X J,GUO C. Urban traffic congestion evaluation based on kernel the semi-supervised extreme learning machine[J]. Symmetry,2017,9(5):1-12.
[11]ZHAO P J, HU H Y. Geographical patterns of traffic congestion in growing megacities: big data analytics from Beijing[J]. Cities,2019,92:164-174.
[12]全国道路交通管理标准化技术委员会.道路交通拥堵评价方法:GA/T 115—2020[S]. 北京:中国标准出版社,2020.
[13]张建旭, 郭力伟. 基于在线地图交通态势分析的路网拥堵状态识别[J].交通运输系统工程与信息, 2018,18(5):75-81.
ZHANG J X,GUO L W.Congestion status recognition of road network based on traffic situation analysis of online map[J]. Journal of Transportation Systems Engineering and Information Technology, 2018,18(5):75-81.(in Chinese)
[14]郭亚军.综合评价理论与方法[M].北京:科学出版社,2002.

基金

国家自然科学基金资助面上项目(71871107)

PDF(1581 KB)

123

Accesses

0

Citation

Detail

段落导航
相关文章

/