Abstract:The anode operation mode of proton exchange membrane fuel cell (PEMFC) mainly includes openend mode, deadend mode and recirculation mode. Different working anode modes lead to different ways of hydrogen emission from anode outlet. The emission study of PEMFC under different anode operation modes was summarized. The results show that in the anode openend mode, the tail hydrogen is directly discharged from the outlet, resulting in serious waste of hydrogen. The hydrogen efficiency can be improved by blending and anode cascade operation mode. The deadend anode PEMFC has the advantages of simple structure and high hydrogen efficiency. However, ″water flooding″ and nitrogen accumulation seriously affect the performance and durability of PEMFC. The disadvantage can be improved by optimizing anode emission strategy. The anode recirculation mode has the advantages of both high performance and high efficiency. The recirculation mode includes active recirculation based on mechanical recirculation pump or electrochemical hydrogen pump and passive recirculation based on ejector, and the anode discharge mode is mainly based on periodic blowing discharge.
FELSEGHI R A, CARCADEA E, RABOACA M S, et al. Hydrogen fuel cell technology for the sustainable future of stationary applications[J]. Energies,doi:10.3390/en12234593.
[2]
RAHIMIESBO M, RAMIAR A, RANJBAR A A, et al. Design, manufacturing, assembling and testing of a transparent PEM fuel cell for investigation of water management and contact resistance at deadend mode[J].
International Journal of Hydrogen Energy, 2017, 42(16): 11673-11688.
[3]
HUNG C Y, HUANG H S, TSAI S W, et al. A purge strategy for proton exchange membrane fuel cells under varyingload operations[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12369-12376.
[4]
HOSSEINI M, AFROUZI H H, ARASTEH H, et al. Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an openended anode using agglomerate model:a CFD study[J]. Energy, doi: 10.1016/j.energy.2019.116090.
[5]
ZHANG S Z, CHEN B, SHU P, et al. Evaluation of performance enhancement by condensing the anode moisture in a proton exchange membrane fuel cell stack[J]. Applied Thermal Engineering, 2017, 120: 115-120.
[6]
ESKIN M G,YESILYURT S. Anode bleeding experiments to improve the performance and durability of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(21): 11047-11056.
[7]
RIZYANDI O B, ESKIN M G,YESILYURT S. Numerical modeling of anodebleeding PEM fuel cells: effects of operating conditions and flow field design[J]. International Journal of Hydrogen Energy, 2021, 46(4): 4378-4398.
[8]
NISHIKAWA H, SASOU H, KURIHARA R, et al. High fuel utilization operation of pure hydrogen fuel cells[J]. International Journal of Hydrogen Energy, 2009, 33(21): 6262-6269.
[9]
ABBOUS S, DILLET J, MARANZANA G, et al. Local potential evolutions during proton exchange membrane fuel cell operation with deadended anode, part I: impact of water diffusion and nitrogen crossover[J]. Journal of Power Sources, 2017, 340: 337-346.
[10]
SIEGEL J B, MCKAY D A, STEFANOPOULOU A G, et al. Measurement of liquid water accumulation in a PEMFC with deadended anode[J]. Journal of the Electrochemical Society, 2008, 155(11): 1168-1178.
[11]
MEYER Q, ASHTON S, CURNICK O, et al. Deadended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, offgas analysis and thermal imaging[J]. Journal of Power Sources, 2014, 254: 1-9.
[12]
HU Z, YU Y, WANG G J, et al. Anode purge strategy optimization of the polymer electrode membrane fuel cell system under the deadend anode operation[J]. Journal of Power Sources, 2016, 320: 68-77.
[13]
PENG Y P, MAHYARI H M, MOSHFEGH A, et al. A transient heat and mass transfer CFD simulation for proton exchange membrane fuel cells (PEMFC) with a deadended anode channel[J]. International Communications in Heat and Mass Transfer, doi: 10.1016/j.icheatmasstransfer.2020.104638.
[14]
MAHYARI H, AFROUZI H H, SHAMS M. Three dimensional transient multiphase flow simulation in a dead end anode polymer electrolyte fuel cell[J]. Journal of Molecular Liquids, 2017, 225: 391-405.
[15]
NIKIFOROW K, KARIMAKI H, KERANEN T M, et al. Optimization study of purge cycle in proton exchange membrane fuel cell system[J]. Journal of Power Sources, 2013, 238: 336-344.
[16]
OMRANI R, MOHAMMADI S S, MAFINEJAD Y, et al. PEMFC purging at low operating temperatures: an experimental approach[J]. International Journal of Energy Research, 2019, 43(13): 7496-7507.
[17]
CHEN B, TU Z K, CHAN S H. Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a deadended anode[J]. Applied Thermal Engineering, 2018, 129(1): 968-978.
[18]
LIN Y F, CHEN Y S. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a deadended anode[J]. Journal of Power Sources, 2017, 340: 176-182.
[19]
GOMEZ A, SASMITO A P, SHAMIM T. Investigation of the purging effect on a deadend anode PEM fuel cellpowered vehicle during segments of a European driving cycle[J]. Energy Conversion and Management, 2015, 106(1): 951-957.
[20]
JIAN Q F, LUO L Z, HUANG B, et al. Experimental study on the purge process of a proton exchange membrane fuel cell stack with a deadend anode[J]. Applied Thermal Engineering, 2018, 142: 203-214.
[21]
DASHTI I, ASGHARI S, GOUDARZI M, et al. Optimization of the performance, operation conditions and purge rate for a deadended anode proton exchange membrane fuel cell using an analytical model[J]. Energy, 2019, 179: 173-185.
[22]
LIU Z Y, CHEN J, LIU H, et al. Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems[J]. Applied Energy, doi:10.1016/j.apenergy.2020.115110.
[23]
MIGLIARDINI F, DI PALMA T M, GAELE M F, et al. Hydrogen purge and reactant feeding strategies in selfhumidified PEM fuel cell systems[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1758-1765.
[24]
RANNANI A, ROKIN M. Effect of nitrogen crossover on purging strategy in PEM fuel cell systems[J]. Applied Energy, 2013, 111: 1061-1070.
[25]
PAN T Y, SHEN J, SUN L, et al. Thermodynamic modelling and intelligent control of fuel cell anode purge[J]. Applied Thermal Engineering, 2019, 154: 196-207.
[26]
SASMITO A P, ALI M I, SHAMIM T. A factorial study to investigate the purging effect on the performance of a deadend anode PEM fuel cell stack[J]. Fuel Cells, 2015, 15(1): 160-169.
[27]
WU B, PARKES M A, DE BENEDETTI L, et al. Realtime monitoring of proton exchange membrane fuel cell stack failure[J]. Journal of Applied Electrochemistry, 2016, 46(11): 1157-1162.
[28]
CHEN B, CAI Y H, YU Y, et al. Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with deadended mode operation II: under different operation pressures[J]. Energy, 2017, 131(1): 50-57.
[29]
YANG Y P, ZHANG X, GUO L J, et al. Degradation mitigation effects of pressure swing in proton exchange membrane fuel cells with deadended anode[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24435-24447.
[30]
ZHAO J, JIAN Q F, HUANG Z P, et al. Experimental study on water management improvement of proton exchange membrane fuel cells with deadended anode by periodically supplying fuel from anode outlet[J]. Journal of Power Sources,doi: 10.1016/j.jpowsour.2019.226775.
[31]
HUANG Z P, JIAN Q F, ZHAO J. Experimental study on improving the dynamic characteristics of opencathode PEMFC stack with deadend anode by condensation and circulation of hydrogen[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19858-19868.
[32]
HAN I S, JEONG J, SHIN H K. PEM fuelcell stack design for improved fuel utilization[J]. International Journal of Hydrogen Energy, 2013, 38(27): 11996-12006.
[33]
ALIZADEH E, KHORSHIDIAN M, SAADAT S H M, et al. The experimental analysis of a deadend H2/O2 PEM fuel cell stack with cascade type design[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11662-11672.
[34]
HWANG J J. Effect of hydrogen delivery schemes on fuel cell efficiency[J]. Journal of Power Sources, 2013, 239: 54-63.
[35]
KOSKI P, PEREZ L C, IHONEN J. Comparing anode gas recirculation with hydrogen purge and bleed in a novel PEMFC laboratory test cell configuration[J]. Fuel Cells, 2015, 15(3): 494-504.
[36]
WANG B W, WU K C, YANG Z R, et al. A quasi2D transient model of proton exchange membrane fuel cell with anode recirculation[J]. Energy Conversion and Management, 2018, 171(1): 1463-1475.
[37]
WANG B W, DENG H, JIAO K. Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation[J]. Applied Energy, 2018, 225: 1-13.
[38]
SHEN K Y, PARK S, KIM Y B. Hydrogen utilization enhancement of proton exchange membrane fuel cell with anode recirculation system through a purge strategy[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16773-16786.
[39]
LEE H Y, SU H C, CHEN Y S. A gas management strategy for anode recirculation in a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(7): 3803-3808.
[40]
ZHANG Q G, TONG Z M, TONG S G, et al. Modeling and dynamic performance research on proton exchange membrane fuel cell system with hydrogen cycle and deadended anode[J]. Energy,doi: 10.1016/j.energy.2020.119476.
[41]
STEINBERGER M, GEILING J, OECHSNER R, et al. Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas[J]. Applied Energy, 2018, 232: 572-582.
[42]
BARBIR F, GRGN H. Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack[J]. Journal of Applied Electrochemistry, 2008, 37(3): 359-365.
[43]
TOGHYANI S, BANIASADI E, AFSHARI E. Performance analysis and comparative study of an anodic recirculation system based on electrochemical pump in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19691-19703.
[44]
KUO J K, JIANG W Z, LI C H, et al. Numerical investigation into hydrogen supply stability and IV performance of PEM fuel cell system with passive Venturi ejector[J]. Applied Thermal Engineering, doi: 10.1016/j.applthermaleng.2020.114908.
[45]
TOGHYANI S, AFSHARI E, BANIASADI E. A parametric comparison of three fuel recirculation system in the closed loop fuel supply system of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7518-7530.
[46]
YE X C, ZHANG T, CHEN H C, et al. Fuzzy control of hydrogen pressure in fuel cell system[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8460-8466.
[47]
YUAN H, DAI H F, WU W, et al. A fuzzy logic PI control with feedforward compensation for hydrogen pressure in vehicular fuel cell system[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5714-5728.
[48]
HWANG J J. Passive hydrogen recovery schemes using a vacuum ejector in a proton exchange membrane fuel cell system[J]. Journal of Power Sources, 2014, 247: 256-263.
[49]
BRUNNER D A, MARCKS S, BAJPAI M, et al. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4457-4466.
[50]
JENSSEN D, BERGER O, KREWER U. Improved PEM fuel cell system operation with cascaded stack and ejectorbased recirculation[J]. Applied Energy, 2017, 195: 324-333.
[51]
XUE H Y, WANG L, ZHANG H L, et al. Design and investigation of multinozzle ejector for PEMFC hydrogen recirculation[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14500-14516.
[52]
NIKIFOROW K, KOSKI P, IHONEN J. Discrete ejector control solution design, characterization, and verification in a 5 kW PEMFC system[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16760-16772.