基于模糊神经网络的茶园拖拉机远程故障诊断系统

梁军, 马志怡, 盘朝奉, 陈龙

江苏大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (5) : 533-539.

PDF(2673 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(2673 KB)
江苏大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (5) : 533-539. DOI: 10.3969/j.issn.1671-7775.2021.05.006
论文

基于模糊神经网络的茶园拖拉机远程故障诊断系统

作者信息 +

Remote fault diagnosis system of tea garden tractor based on fuzzy neural network

Author information +
文章历史 +

摘要

 针对茶园拖拉机传统故障诊断对故障信息的采集存在严重滞后性的问题,提出一种基于模糊神经网络(fuzzy neural network,FNN)的茶园拖拉机远程故障诊断系统(remote fault diagnosis system,RFDS).该方法融合模糊算法和神经网络的优点,通过对车辆运行的实时监控,远程处理车辆信息,获取车辆潜在的故障和实时故障信息,避免了传统方式需进行的大量检测,为维修争取到了更多的时间,提高了生产效率.该系统以仿真软件Carsim为基础,利用Carsim实时模拟车辆运行情况,通过训练集和测试集对算法模型进行训练和验证,结果表明:FNN诊断算法满足系统性能要求,准确率可以达到90%以上,可远程准确诊断茶园拖拉机故障.此外,RFDS技术对于车辆的开发也有重要的作用,可以在车辆的研发阶段通过远程故障诊断系统进行车辆性能评估,节省了大量的人力资源.

Abstract

To solve the problem of traditional fault diagnosis for tea garden tractor with serious delay during collecting fault information, a remote fault diagnosis system(RFDS) of tea garden tractor was proposed based on fuzzy neural network(FNN). Combining the advantages of fuzzy algorithm and neural network, through the real-time monitoring of vehicle operation information, the vehicle information was remotely processed to obtain vehicle potential fault and real-time fault information for avoiding a large number of detections in traditional methods, and more time was gained for maintenance and improving production efficiency. Based on the simulation software of Carsim, the vehicle operation was simulated in real time,and the algorithm model was trained and verified by training set and test set. The results show that FNN diagnosis algorithm can meet the performance requirements of the system, and the accuracy can reach more than 90%. The tractor fault in tea garden can be diagnosed remotely. RFDS technology also plays an important role in the development of vehicles. The performance of vehicles can be evaluated through remote fault diagnosis system in the R & D stage of vehicles, which saves a lot of human resources.

关键词

茶园拖拉机 / 模糊神经网络 / 远程故障诊断 / Carsim / 远程监控

Key words

 tea garden tractor / fuzzy neural network / remote fault diagnosis / Carsim / remote monitoring

引用本文

导出引用
梁军, 马志怡, 盘朝奉, . 基于模糊神经网络的茶园拖拉机远程故障诊断系统[J]. 江苏大学学报(自然科学版), 2021, 42(5): 533-539 https://doi.org/10.3969/j.issn.1671-7775.2021.05.006
LIANG Jun, MA Zhiyi, PAN Chaofeng, et al. Remote fault diagnosis system of tea garden tractor based on fuzzy neural network[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(5): 533-539 https://doi.org/10.3969/j.issn.1671-7775.2021.05.006

参考文献

[1]魏晓兵, 乔维高, 杜常清, 等. 基于LabVIEW的拖拉机电气故障检测系统设计与试验 [J]. 中国农机化学报, 2020, 41(7): 143-149.
WE X B,QIAO W G,DU C Q,et al.Design and test of tractor electrical fault detection system based on LabVIEW [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 143-149.(in Chinese)
[2]王义强, 高骥, 张军辉, 等. 汽轮机故障诊断技术的发展现状研究 [J]. 机电信息, 2020 (21): 30-32.
WANG Y Q,GAO J,ZHANG J H, et al.Research on the development status of turbine fault diagnosis techno-logy[J]. Mechanical and Electrical Information, 2020 (21): 30-32. (in Chinese)
[3]梁军, 赵彤阳, 冯军志, 等. 一种茶园拖拉机远程故障诊断系统及方法: CN106017948B [P]. 2019-12-31.
[4]FISCHER F, DEUTSCHER J. Flatness-based algebraic fault diagnosis for distributed-parameter systems [J]. Automatica, doi:10.1016/j.automatica.2020.108987.
[5]LIU Z, JIN Y, ZUO M J, et al. ACCUGRAM: a novel approach based on classification to frequency band selection for rotating machinery fault diagnosis [J]. ISA Transactions, 2019, 95:346-357.
[6]BHANDARI G P, RATNESHWER R. Dependency-based fault diagnosis approach for SOA-based systems using Colored Petri Nets [J]. Journal of King Saud University-Computer and Information Sciences, doi:org/10.1016/j.jksuci.2018.12.002.
[7]ZHANG J. Research of remote fault diagnosis system of electric locomotive based on 4G network [J]. Advances in Engineering Research,2018,163:1777-1780.
[8]陈宏旦, 朱建邦. 远程监控技术的发展现状和趋势 [J]. 信息记录材料, 2019, 20(8): 42-43.
CHEN H D,ZHU J B.The development status and trend of remote monitoring technology[J]. Information Recording Materials, 2019, 20(8): 42-43. (in Chinese)
[9]谢少波. 电动挖掘机远程监控系统设计与故障诊断研究 [D].厦门:华侨大学, 2018.
[10]吕洪武, 赵航, 王宏志, 等. 基于模糊神经网络的MVB故障诊断算法 [J]. 吉林大学学报(理学版), 2020, 58(1): 104-108.
LYU H W,ZHAO H,WANG H Z, et al. Fault diagnosis algorithm for MVB based on fuzzy neural network[J]. Journal of Jilin University(Science Edition), 2020, 58(1): 104-108. (in Chinese)
[11]路永华, 彭会萍. 基于小波包分析和相关向量机的电路故障诊断 [J]. 吉林大学学报(理学版), 2015, 53(5): 981-986.
LU Y H,PENG H P. Circuit fault diagnosis based on wavelet packet analysis and relevance vector machine[J]. Journal of Jilin University(Science Edition), 2015, 53(5): 981-986. (in Chinese)
[12]李志魁. 基于CarSim的整车动力学建模与操纵稳定性仿真分析 [D].长春:吉林大学, 2007.
[13]ELNASHAR G, BHAT R B, SEDAGHATI R. Modeling and dynamic analysis of a vehicle-flexible pavement coupled system subjected to road surface excitation [J]. Journal of Mechanical Science and Technology, 2019, 33(7): 3115-3125.
[14]WANG T, LIU W, ZHAO J, et al. A rough set-based bio-inspired fault diagnosis method for electrical substations [J]. International Journal of Electrical Power & Energy Systems, doi:10.1016/j.ijepes.2020.105961.
[15]ZHANG X, CHEN G, HAO T, et al. Rolling bearing fault convolutional neural network diagnosis method based on casing signal [J]. Journal of Mechanical Science and Technology, 2020, 34(2):1-10.
[16]BOUM A, YOME N, LEANDRE N. Fault diagnosis of an induction motor based on fuzzy logic, artificial neural network and hybrid system [J]. International Journal of Control Science and Engineering ,2018, 8(2): 42-51.

基金

国家重点研发计划项目(2018YFB1600500)

PDF(2673 KB)

121

Accesses

0

Citation

Detail

段落导航
相关文章

/