甲烷和正庚烷的爆炸特性试验

韦一1, 潘剑锋1, GABEL Dieter2

江苏大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (3) : 271-277.

PDF(3086 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(3086 KB)
江苏大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (3) : 271-277. DOI: 10.3969/j.issn.1671-7775.2021.03.004
论文

甲烷和正庚烷的爆炸特性试验

作者信息 +

Experiment on explosion characteristics of methane and n-heptane

Author information +
文章历史 +

摘要

为有效防止工业生产中气体和液体(蒸气)爆炸事故的发生,需要获得相关物质的爆炸特性参数.对此,基于传统的20 L球形爆炸测试装置,对宏观静止和流动状态下甲烷和正庚烷的最大爆炸压力(pmax)、最大爆炸压力上升率((dp/dt) max)和爆炸指数(KG)进行了测量和分析.结果表明:在2种状态下,甲烷的pmax和(dp/dt)max均随着体积分数的增加,先增大后减小,且2种参数均在体积分数为11%处同时达到峰值;在流动状态下,正庚烷的pmax和(dp/dt)max也呈现相似规律,并在体积分数为4%处达到峰值,即2种烷类的最佳爆炸体积分数分别约为11%和4%;此外,流动状态下 2种烷类在最佳爆炸体积分数处的pmax小幅提高5%~10%,相应的(dp/dt) max则显著提高到4~5 倍,导致爆炸释放能量与爆炸反应速率增大;2种物质在流动状态下的KG值增加到4~5倍,大幅增加爆炸的剧烈程度和危险性.

Abstract

To effectively prevent gas and liquid (vapor) explosion accidents in industrial production, it is necessary to obtain explosion characteristics of relevant gases and liquids. Based on the traditional 20 L spherical explosion test apparatus, the maximum explosion pressure(pmax), the maximum explosion pressure rise rate((dp/dt)max) and the deflagration index (KG) of methane and n-heptane with different concentrations were measured and analyzed under quiescent and flowing conditions. The results show that the  pmax and (dp/dt)max values of methane are increased with latter decreasing and reach the peak values at 11%concentration under both conditions. The pmax and (dp/dt)max  values of n-heptane show the same rule under flowing conditions and reach the peak values at 4% concentration. The optimal explosive concentrations of two alkanes are about 11% and 4%, respectively. The pmax  values of two alkanes at optimal explosive concentrations are increased slightly by about 5% to 10% under flowing conditions, and the corresponding  (dp/dt)max values are significantly increased by about 4 to 5 times, which leads to large explosion energy release and high explosion reaction rate. The KG values are also increased by 4 to 5 times, resulting in high destructiveness and hazard of explosions.

关键词

甲烷 / 正庚烷 / 球形爆炸容器 / 爆炸压力 / 爆炸压力上升率 / 流动状态

Key words

methane / n-heptane / spherical explosion container / explosion pressure / explosion pressure rise rate / flowing condition

引用本文

导出引用
韦一1, 潘剑锋1, GABEL Dieter2. 甲烷和正庚烷的爆炸特性试验[J]. 江苏大学学报(自然科学版), 2021, 42(3): 271-277 https://doi.org/10.3969/j.issn.1671-7775.2021.03.004
WEI Yi1, PAN Jianfeng1, GABEL Dieter2. Experiment on explosion characteristics of methane and n-heptane[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(3): 271-277 https://doi.org/10.3969/j.issn.1671-7775.2021.03.004

参考文献

[1]张增亮, 李革梅. 常见工业可燃气体(液体)最大允许氧含量的特性研究J. 煤炭学报, 2007, 32(5):513-516.
ZHANG Z L, LI G M. Study on characteristics of the maximum allowable oxygen content of common industrial flammable gases(liquids)J. Journal of China Coal Society, 2007,32(5):513-516. (in Chinese)
[2]张增亮,林柏泉,李贤忠,等. 液化石油气爆炸抑制研究J.燃烧科学与技术,2013,19(4):317-322.
ZHANG Z L, LIN B Q, LI X Z, et al. Liquefied petroleum gas explosion suppressionJ.Journal of Combustion Science and Technology, 2013, 19(4):317-322. (in Chinese)
[3]周宁,李海涛,任常兴,等. 氮气、二氧化碳对液化石油气的惰化抑爆研究J. 消防科学与技术,2016,35(6):733-737.
ZHOU N, LI H T, REN C X, et al. The liquefied petroleum gas inert gas explosion suppression about of nitrogen and carbon dioxideJ.Fire Science and Technology, 2016, 35(6):733-737. (in Chinese)
[4]CHEN C F, SHU C M, WU H C, et al. Ethylene gas explosion analysis under oxygen-enriched atmospheres in a 20-liter spherical vesselJ. Journal of Loss Prevention in the Process Industries, 2017, 49:519-524.
[5]RAZUS D, BRINZEA V, MITU M, et al. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vesselJ.Journal of Hazardous Materials, 2011, 190:891-896.
[6]SALZANO E, CAMMAROTA F, BENEDETTO A D, et al. Explosion behavior of hydrogen-methane/air mixturesJ.Journal of Loss Prevention in the Process Industries, 2012,25(3):443-447.
[7]PEKALSKI A A, TERLI E, ZEVENBERGEN J F, et al. Influence of the ignition delay time on the explosion parameters of hydrocarbon-air-oxygen mixtures at eleva-ted pressure and temperatureJ. Proceedings of the Combustion Institute, 2005, 30(2):1933-1939.
[8]高娜, 胡毅亭, 张延松. 初始温度对甲烷空气爆炸压力影响的试验研究J. 爆破器材, 2016, 45(3):26-30.
GAO N, HU Y T, ZHANG Y S. Experimental research on methane-air mixtures explosion pressure under normal and elevated initial temperatureJ. Explosive Mate-rials, 2016, 45(3):26-30. (in Chinese)
[9]CUI G, ZENG W P, LI Z L, et al. Experimental study of minimum ignition energy of methane/air mixtures at elevated temperatures and pressuresJ. Fuel, 2016,175:257-263.
[10]邓军, 程方明, 罗振敏, 等. 湍流状态下甲烷爆炸特性的实验研究J. 中国安全科学学报, 2008,18(8):85-88.
DENG J, CHENG F M, LUO Z M, et al. Experimental study on methane property in turbulent flowJ. China Safety Science Journal, 2008,18(8):85-88. (in Chinese)
[11]黄超, 杨绪杰, 陆路德, 等. 烷烃高温下爆炸极限的测定J. 化工进展, 2002,21(7):496-498.
HUANG C, YANG X J, LU L D, et al. Explosion li-mits measurement of paraffin under high temperatureJ. Chemical Industry and Engineering Progress, 2002,21(7):496-498. (in Chinese)
[12]刘雪岭, 张奇. 正烷烃液体云雾最小点火能实验研究J. 北京理工大学学报, 2018, 38(12):1252-1255,1320.
LIU X L, ZHANG Q. Experimental study on minimum ignition energy of n-alkane mistsJ. Transactions of Beijing Institute of Technology, 2018, 38(12):1252-1255,1320. (in Chinese)
[13]赵衡阳.气体和粉尘爆炸原理M.北京:北京理工大学出版社,1996.
[14]胡双启. 燃烧与爆炸M. 北京:北京理工大学出版社, 2015.
[15]孙会利.可燃气体/粉尘两相爆炸特性实验研究D.大连:大连理工大学,2017.
[16]DAHOE A E, DE GOEY L P. On the determination of the laminar burning velocity from closed vessel gas explosionsJ. Journal of Loss Prevention in the Process Industries, 2003, 16(6):457-478.

基金

国家自然科学基金资助项目(51976082)

PDF(3086 KB)

202

Accesses

0

Citation

Detail

段落导航
相关文章

/