混合动力物流车动力系统匹配及仿真

赵尚义1, 郑青星2,3, 刘豪森2,3

江苏大学学报(自然科学版) ›› 2020, Vol. 41 ›› Issue (6) : 648-654.

PDF(1433 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(1433 KB)
江苏大学学报(自然科学版) ›› 2020, Vol. 41 ›› Issue (6) : 648-654. DOI: doi: 10.3969/j.issn.1671-7775.2020.06.005
论文

混合动力物流车动力系统匹配及仿真

作者信息 +

Matching and simulation of power system of hybrid electric logistics vehicle

Author information +
文章历史 +

摘要

以一款传统后轴驱动柴油物流车为原型,在保证动力性的前提下,为了改善整车排放性能,降低燃油消耗,设计了一款搭配汽油机的混合动力物流车.通过理论匹配计算设计了新的动力系统,同时制定了合理的动力分配控制策略.利用AVL Cruise软件搭建了整车模型,进行了加速与爬坡仿真试验,并基于CWTVC工况进行了循环工况仿真分析,得到了整车动力性仿真结果及经济性仿真结果.最后基于多目标粒子群算法,在保证电池SOC(state of charge)平衡前提下,对整车结构参数及控制参数等进行了优化.结果表明:理论匹配计算结果较合理,设计的混动车优化前,爬坡性能、加速性能以及最高车速均满足动力性能指标,整车燃油消耗较原车降低了28.00%;优化后,整车综合能耗较优化前降低了15.00%.

Abstract

To improve vehicle emission performance and reduce fuel consumption, a hybrid vehicle with gasoline engine was designed on the premise of ensuring the power with a traditional rearaxledriven diesel vehicle as prototype. A new power system was designed by theoretical matching calculation, and a reasonable power distribution control strategy was formulated. The whole vehicle model was built by AVL Cruise, and the acceleration and climbing simulation experiments were carried out. Based on CWTVC, the cycle simulation analysis was carried out to obtain the dynamic performance results and economic results. According to the multiobjective particle swarm optimization (MPSO) algorithm, the vehicle structure parameters and control parameters were optimized on the premise of battery state of charge (SOC)balance. The results show that the theoretical matching calculation results are reasonable. Before optimization, the climbing performance, the acceleration performance and the maximum speed can meet the dynamic performance index. The fuel consumption of the designed hybrid vehicle is 28.00% lower than that of the original vehicle. After optimization, the comprehensive energy consumption of the whole vehicle is 15.00% lower than that before optimization.

关键词

混合动力汽车 / 动力系统参数匹配 / Cruise仿真 / 多目标粒子群算法 / 参数优化

Key words

hybrid electric vehicle / power system parameter matching / Cruise simulation / MPSO / parameter optimization

引用本文

导出引用
赵尚义1, 郑青星2, 3, . 混合动力物流车动力系统匹配及仿真[J]. 江苏大学学报(自然科学版), 2020, 41(6): 648-654 https://doi.org/doi: 10.3969/j.issn.1671-7775.2020.06.005
ZHAO Shangyi1, ZHENG Qingxing2, 3, et al. Matching and simulation of power system of hybrid electric logistics vehicle[J]. Journal of Jiangsu University(Natural Science Edition), 2020, 41(6): 648-654 https://doi.org/doi: 10.3969/j.issn.1671-7775.2020.06.005

参考文献

1]郭德卿, 李栋. 2018年1~11月新能源物流车市场分析J. 专用汽车, 2019(1):44-47.
GUO D Q, LI D.New energy vehicle logistics vehicle market analysis of first 11 month in 2018 J. Special Purpose Vehicle, 2019(1):44-47.(in Chinese)
[2]GU C,LIU H, CHEN X B, et al. Parameter design of the powertrain of fuel cell electric vehicle and the energy management strategyC∥Proceedings of the 34th Chinese Control Conference, 2015:8027-8032.
[3]宫闪闪. ISG型中度HEV动力总成匹配和控制策略研究D. 合肥:合肥工业大学, 2013.
[4]阮晓东, 牛礼民, 叶李军. 基于CRUISE并联式HEV动力总成参数匹配与仿真(续Ⅰ)J. 汽车工程师, 2014(6):25-27.
RUAN X D, NIU L M, YE L J. Parameter validation and simulation of parallel hybrid electric vehicle power train based on cruise (continued1)J. Automotive Engineer, 2014(6):25-27.(in Chinese)
[5]PACHTER M. Guidelines for automatic gearbox design for an electrically propelled vehicleJ. Automatica, 1983,19(5):543-549.
[6]WU J D, PENG J K, HE H W, et al. Comparative analysis on the rulebased control strategy of two typical hybrid electric vehicle powertrainJ. Energy Procedia, 2016,104:384-389.
[7]SONG D F, YU F K, ZENG X H, et al. Research on parameters matching design method for planetary hybrid logistics vehicleJ. IFAC PapersOnLine, 2018,51(31):21-28.
[8]朱三平, 朱文波, 覃书勇, 等. 基于多目标优化的传动系速比匹配方法研究J. 机电技术, 2017(5):91-93.
ZHU S P, ZHU W B, QIN S Y, et al. Research on the matching method of transmission speed ratio based on multiobjective optimizationJ. Mechanical & Electrical Technology, 2017(5):91-93.(in Chinese)
[9]钱娟, 王东方, 缪小东. 基于粒子群算法的汽车传动系参数多目标优化J. 机械制造与自动化, 2018,47(3):168-170.
QIAN J, WANG D F, MIAO X D. Multiobjective optimization of vehicle power train parameters based on PSO algorithmJ. Machine Design and Manufacturing Engineering, 2018,47(3):168-170.(in Chinese)
[10]YANG Y P, SHIH Y C, CHEN J M. Realtime torquedistribution strategy for a pure electric vehicle with multiple traction motors by particle swarm optimisationJ. IET Electrical Systems in Transportation, 2016,6(2):76-87.
 

基金

国家重点研发计划项目(2017YFB0103900)

PDF(1433 KB)

3

Accesses

0

Citation

Detail

段落导航
相关文章

/