基于注意力机制的车辆行为预测

蔡英凤1, 朱南楠2, 邰康盛2, 刘擎超1, 王海2

江苏大学学报(自然科学版) ›› 2020, Vol. 41 ›› Issue (2) : 125-130.

PDF(2505 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(2505 KB)
江苏大学学报(自然科学版) ›› 2020, Vol. 41 ›› Issue (2) : 125-130. DOI: 10.3969/j.issn.1671-7775.2020.02.001
论文

基于注意力机制的车辆行为预测

作者信息 +

Vehicle behavior prediction based on attention mechanism

Author information +
文章历史 +

摘要

为了解决智能驾驶场景中对周边车辆未来行为的预测问题,研究了基于注意力机制的长短时记忆网络(LSTM)模型的车辆行为预测方法.首先提出了一种非均匀步长的时间序列数据划分方法,将属于特定行为的车辆时序信息进行分类;以LSTM为基本的神经网络框架,用注意力机制判断输入时序信息中各个时间步信息的重要程度,分配不同的权重值;以目标车辆及其周边车辆的历史轨迹信息作为算法输入,用来预测目标车辆将来的运动行为.结果表明:该算法可以解决固定步长的时序分类方法导致的信息遗漏或计算资源负担增加的问题,同时能够有效提高行为预测准确性,减少车辆行为预测时间.

Abstract

To predict the future behavior of surrounding vehicles in intelligent driving scenarios, the vehicle behavior prediction method was investigated based on the attention mechanism of long and short-term memory(LSTM) network model. The time series data division method of non-uniform step-size was proposed to classify the vehicle time series information of specific behaviors. With LSTM as the basic neural network framework, the attention mechanism was used to assign different weight values for each time step according to the importance in the time series information. The historical trajectory information of the target vehicle and its surrounding vehicles was used as algorithm input to predict the future motion behavior of the target vehicle. The results show that the algorithm can solve the problems of information omission and increasing of computing resource burden caused by the fixed step-size classification method. The algorithm can effectively improve the accuracy of behavior prediction and reduce the time using of vehicle behavior prediction.

关键词

车辆行为预测 / 注意力机制 / 长短时记忆网络 / 智能驾驶 / 时间序列

Key words

vehicle behavior prediction / attention mechanism / long and short-term memory / intelligent driving / time series

引用本文

导出引用
蔡英凤1, 朱南楠2, 邰康盛2, . 基于注意力机制的车辆行为预测[J]. 江苏大学学报(自然科学版), 2020, 41(2): 125-130 https://doi.org/10.3969/j.issn.1671-7775.2020.02.001
CAI Yingfeng1, ZHU Nannan2, TAI Kangsheng2, et al. Vehicle behavior prediction based on attention mechanism[J]. Journal of Jiangsu University(Natural Science Edition), 2020, 41(2): 125-130 https://doi.org/10.3969/j.issn.1671-7775.2020.02.001

参考文献

[1]YANG Q, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C, 1996, 4(3): 113-129.
[2]MORRIS B T, TRIVEDI M M. Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2287-2301.
[3]DUEHOLM J V, KRISTOFFERSEN M S, SATZODA R K, et al. Trajectories and maneuvers of surrounding vehicles with panoramic camera arrays[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(2): 203-214.
[4]KHOSROSHAHI A, OHN-BAR E, TRIVEDI M M. Surround vehicles trajectory analysis with recurrent neural networks[C]∥2016 IEEE 19th International Confe-rence on Intelligent Transportation Systems. Piscataway, USA: IEEE, 2016: 2267-2272.
[5]SCHREIER M, WILLERT V, ADAMY J. Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems[C]∥17th International IEEE Conference on Intelligent Transportation Systems. Piscataway, USA:IEEE, 2014: 334-341.
[6]HOUENOU A, BONNIFAIT P, CHERFAOUI V, et al. Vehicle trajectory prediction based on motion model and maneuver recognition[C]∥2013 IEEE/RSJ Internatio-nal Conference on Intelligent Robots and Systems. Pisca-taway, USA:IEEE, 2013: 4363-4369.
[7]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[8]ONDRUSKA P, POSNER I. Deep tracking: seeing beyond seeing using recurrent neural networks[C]∥Thirtieth AAAI Conference on Artificial Intelligence. Pisca-taway, USA:IEEE, 2016: 3361-3367.
[9]KRAJEWSKI R, BOCK J, KLOEKER L,et al. The highd dataset:a drone dataset of naturalistic vehicle tra-jectories on german highways for validation systems[C]∥2018 21st International Conference on Intelligent Transportion Systems. Piscataway, USA:IEEE, 2018:2118-2125.
[10]HOCHREITER S, SCHMIDHUBER J.LSTM can solve hard long time lag problems[C]∥Advances in Neural Information Processing Systems, 1997: 473-479.

基金

国家重点研发计划项目(2017YFB0102603); 国家自然科学基金资助项目(51875255,61601203,61773184); 江苏省自然科学基金资助项目(BK20180100); 江苏省重点研发计划项目(BE2016149); 江苏省六大人才高峰项目(2018-TD-GDZB-022)


PDF(2505 KB)

102

Accesses

0

Citation

Detail

段落导航
相关文章

/