离心喷嘴雾滴运动轨迹与沉积分布特性

周晴晴, 薛新宇, 杨风波, 秦维彩

江苏大学学报(自然科学版) ›› 2017, Vol. 38 ›› Issue (1) : 18-23.

PDF(2225 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(2225 KB)
江苏大学学报(自然科学版) ›› 2017, Vol. 38 ›› Issue (1) : 18-23. DOI: 10.3969/j.issn.1671-7775.2017.01.004
论文

离心喷嘴雾滴运动轨迹与沉积分布特性

作者信息 +

Trajectory and deposition distribution features of centrifugal atomization nozzle droplet

Author information +
文章历史 +

摘要

针对转盘离心喷嘴雾滴运动方程难以用解析方法求解,以及雾滴群轨迹难以用试验手段追踪的问题.根据雾滴在空气中的受力理论分析,得到雾滴运动的物理方程.采用4阶标准RungeKutta算法,基于Matlab平台进行数值求解,得到了雾滴水平速度、垂直速度的变化曲线及雾滴的运动轨迹.搭建了离心雾化试验台,进行了雾滴沉积分布特性试验.结果表明:在转速为6 000 r·min-1,流量为700 mL·min-1雾化条件下,雾滴水平速度由15.71 m·s-1迅速衰减为0;雾滴垂直速度由0迅速增大到一定速度,雾滴最终沉降速度随雾滴粒径的增大而增加;粒径越大的雾滴水平位移越远;不同粒径的雾滴水平位移的理论值和试验值的相对误差均在5.31%以内,运动模型推导和求解正确.

Abstract

Droplet trajectory of rotary disk centrifugal atomization nozzle is difficult to be solved by analytical method and traced by test means. The droplet movement physical equations were obtained by force analysis and solved by standard fourth order RungeKutta algorithm based on Matlab platform. The horizontal and vertical velocity curves and the droplet trajectories were also obtained. A centrifugal atomization test equipment was established to test the droplet deposition distribution characteristics. The results show that under the atomization conditions with speed of 6 000 r·min-1 and flow rate of 700 mL ·min-1, the droplet horizontal speed rapidly decreases from 15.71 m·s-1 to 0. The droplet vertical velocity rapidly increases from 0 to a certain speed, and the droplet landing velocity and the horizontal displacement are increased with the increasing of droplet size. Compared the theoretical values of horizontal displacement of different diameter droplets with the experimental values, the relative errors are less than 5.31%, which indicates that motion model is derived and solved correctly.

关键词

离心喷嘴 / 雾滴 / 运动轨迹 / RungeKutta算法 / 雾滴沉积分布

Key words

centrifugal atomization nozzle / droplet / trajectory / RungeKutta algorithm / droplet deposition distribution

引用本文

导出引用
周晴晴, 薛新宇, 杨风波, . 离心喷嘴雾滴运动轨迹与沉积分布特性[J]. 江苏大学学报(自然科学版), 2017, 38(1): 18-23 https://doi.org/10.3969/j.issn.1671-7775.2017.01.004
ZHOU Qing-Qing, XUE Xin-Yu, YANG Feng-Bo, et al. Trajectory and deposition distribution features of centrifugal atomization nozzle droplet[J]. Journal of Jiangsu University(Natural Science Edition), 2017, 38(1): 18-23 https://doi.org/10.3969/j.issn.1671-7775.2017.01.004

参考文献

[1]薛新宇,秦维彩,孙竹,等. N3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报,2013,40(3):273-278.
XUE X Y, QIN W C, SUN Z, et al. Effects of N3 UAV spraying methods on the efficiency of insecticides against planthoppers and Cnaphalocrocis medinalis[J]
. Acta Phytophylacica Sinica, 2013, 40(3): 273-278. (in Chinese)
[2]周立新,薛新宇,孙竹,等.航空喷雾用电动离心喷头试验研究[J]. 中国农机化,2011(1):107-111.
ZHOU L X, XUE X Y, SUN Z, et al. Experimental study on electricaldriven centrifugal nozzle of aerial spray [J]. Chinese Agricultural Mechanization, 2011
(1): 107-111. (in Chinese)
[3]ELLWOOD K R J, TARDIFF J L, ALAIE S M. A simplified analysis method for correlating rotary atomizer performance on droplet size and coating appearance[
J]. Journal of Coatings Technology and Research, 2014, 11(3): 303-309.
[4]MOHEBI M M, EVANS J R G. The trajectory of inkjet droplets: modelling and experiment[J]. Chemical Engineering Science, 2005, 60(13):3469-3476.
[5]AHMED M, YOUSSEF M S. Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics[J]. Chemical Engineering
Science, 2014, 107(14):149-157.
[6]贾卫东,李萍萍,邱白晶,等. 农用荷电喷雾雾滴粒径与速度分布的试验研究 [J].农业工程学报,2008,24(2):17-21.
JIA W D, LI P P, QIU B J, et al. Experimental investigation of droplet diameter and velocity distributions in agricultural electrostatic sprays[J].
Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(2): 17-21. (in Chinese)
[7]周宏平,茹煜,舒朝然,等. 航空静电喷雾装置的改进及效果试验[J]. 农业工程学报,2012,28(12):7-12.
ZHOU H P, RU Y, SHU C R, et al. Improvement and experiment of aerial electrostatic spray device [J]. Transactions of the Chinese Society of Agricultural
Engineering, 2012, 28(12): 7-12. (in Chinese)
[8]COLBERT S A, CAIRNCROSS R A. A discrete droplet transport model for predicting spray coating patterns of an electrostatic rotary atomizer[J]. Journal
of Electrostatics, 2006, 64(3):234-246.
[9]PARKER S, NALLY J, FOAT T, et al. Refinement and testing of the driftflux model for indoor aerosol dispersion and deposition modelling[J]. Journal
of Aerosol Science, 2010, 41(10):921-934.
[10]张瑾奕,薄涵亮,孙玉良,等.三维空间液滴运动模型[J].清华大学学报(自然科学版),2013,53(1):96-101.
ZHANG J Y, BO H L, SUN Y L, et al. Threedimensional droplet motion model [J]. J Tsinghua Univ (Sci & Tech), 2013, 53(1): 96-101. (in Chinese)
[11]杨风波,马大为,朱忠领,等. 基于真实热力学过程分析的气动弹射性能研究[J].机械工程学报,2013,49(24):167-174.
YANG F B, MA D W, ZHU Z L, et al. Pneumatic catapult performance research based on the true thermodynamic process analysis [J]. Journal of Mechanical
Engineering, 2013, 49(24): 167-174. (in Chinese)
[12]全国农业机械标准化技术委员.植物保护机械词汇:GB/T 20084—2006 [S].北京:中国标准出版社,2006.

基金

公益性行业(农业)科研专项经费资助项目(201203025); 江苏省农机三新工程项目(NJ2014-09)


PDF(2225 KB)

92

Accesses

0

Citation

Detail

段落导航
相关文章

/