为了有效控制钛夹杂对帘线钢盘条拉拔加工性能的不利影响,通过热力学理论计算结合现场实际生产数据,对铁水中的[Ti]-[Si]平衡、转炉脱钛以及精炼增钛过程进行了分析,提出了相应的钛质量分数控制措施.结果表明:铁水中钛和硅的质量分数存在较好的线性关系,将高炉铁水硅质量分数控制在较低水平,对降低铁水钛质量分数具有重要意义.转炉终点钢水钛质量分数受转炉终点钢水碳质量分数和温度的影响,其中温度的影响尤为明显.为了降低转炉终点钢水含钛量,必须做好转炉终点碳温控制.此外,为了尽量减少钢液精炼过程中的增钛量,必须严格控制转炉出钢下渣量和精炼渣料中的含钛量.
Abstract
In order to effectively control the detrimental effect of Ti inclusion on drawing processing performance of steel wire rod, the equilibrium of in hot metal, titanium removal in converter and titanium pickup during refining process were investigated by thermodynamic theoretical calculation and actual production data. The corresponding control measures of Ti content were proposed. The analysis results show that the Ti content in hot metal has good linear relationship with that of Si. It is of great significance to reduce the Ti content in BF hot metal when the Si content is controlled at low level. The Ti content at BOF endpoint is affected by C content and temperature, especially by temperature. In order to decrease the Ti content at BOF endpoint, C content and temperature must be well controlled. Under the strict control of converter slag amount and Ti content in refining slag material, the amount of titanium pickup during refining process can be reduced substantially.
关键词
帘线钢 /
脱钛 /
增钛 /
热力学 /
钛夹杂
{{custom_keyword}} /
Key words
tire cord steel /
titanium removal /
titanium pickup /
thermodynamics /
Ti inclusion
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]王国林, 施斌, 姬新生,等. 基于人工智能技术的轮胎硫化优化[J]. 江苏大学学报:自然科学版, 2011, 32(2):144-147.
Wang Guolin, Shi Bin, Ji Xinsheng, et al. Tire curing optimization based on artificial intelligence technology[J]. Journal of Jiangsu University:Natural Science Edition, 2011, 32(2):144-147.(in Chinese)
[2]Liu H Y, Wang H L, Li L, et al. Investigation of Ti inclusions in wire cord steel[J]. Ironmaking & Steelmaking, 2011, 38(1): 53-58.
[3]罗通伟. 0Cr18Ni10Ti钢中TiN夹杂物的危害及应对措施[J]. 特钢技术, 2014, 20(3):1-4.
Luo Tongwei. Harmfulness of TiN inlusion in 0Cr18Ni10Ti and countermeasures for its eliminating[J]. Special Steel Technology, 2014, 20(3):1-4. (in Chinese)
[4]Ma Wenjun, Bao Yanping, Zhao Lihua, et al. Control of the precipitation of TiN inclusions in gear steels[J]. International Journal of Minerals Metallurgy & Materials, 2014, 21(3):234-239.
[5]Jiang Yuedong, Lei Jialiu, Zhang Jing, et al. Effect of carbon content on Ti inclusion precipitated in tire cord steel[J]. Journal of Surface Engineered Materials and Advanced Technology, 2013(3): 283-286.
[6]Zhang Jing, Xue Zhengliang, Jiang Yuedong, et al. Research on precipitation of Ti inclusions during solidification of tire cord steel of SWRH82A[J]. Metalurgia International, 2014,19 (1):34-37.
[7]Michelic S K, Loder D, Reip T, et al. Characterization of TiN, TiC and Ti(C,N) in titaniumalloyed ferritic chromium steels focusing on the significance of different particle morphologies[J]. Materials Characterization, 2015, 100:61-67.
[8]Sun Liyuan, Li Jingshe, Zhang Lifeng, et al. Production of nitrogenbearing stainless steel by injecting nitrogen gas[J].Journal of Iron and Steel Research,International,2011,18(11):7-11.
[9]黄希祜. 钢铁冶金原理[M].3版.北京: 冶金工业出版社, 2004.
[10]郭大勇,高航,万雪峰,等. 帘线钢精炼过程碳还原氧化钛理论分析[J]. 材料与冶金学报, 2013, 12(2): 99-102.
Guo Dayong, Gao Hang, Wan Xuefeng, et al. Analysis of reduction of TiO2 by carbon during tyre cord steel refining process[J]. Journal of Materials and Metallurgy, 2013,12(2): 99-102. (in Chinese)
[11]惠志刚, 汪保平. 高炉炉温与铁水硅质量分数的推算及其应用[J]. 安徽工业大学学报:自然科学版, 2010, 27(3):221-224.
Hui Zhigang, Wang Baoping. Calculation application on hot blast furnace temperature and metal iron silicon[J]. Journal of Anhui University of Technology:Natural Science, 2010, 27(3): 221-224. (in Chinese)
[12]王明林, 成国光, 赵沛, 等. 含钛低碳钢凝固过程中氧化钛形成的热力学[J]. 钢铁研究学报, 2004, 16(3):40-43.
Wang Minglin, Cheng Guoguang, Zhao Pei, et al.Formation thermodynamics of titanium oxide during solidification of low carbon steel containing titanium[J]. Journal of Iron and Steel Research, 2004, 16(3):40-43. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
湖北省自然科学基金资助项目(2015CFC838)
{{custom_fund}}