两轴驱动混合动力汽车动力系统的优化设计

郑晨飞, 姚晓山, 曹晓雨, 黄震, 严彦

江苏大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (1) : 22-27.

PDF(6547 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(6547 KB)
江苏大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (1) : 22-27. DOI: 10.3969/j.issn.1671-7775.2021.01.004
论文

两轴驱动混合动力汽车动力系统的优化设计

作者信息 +

Optimization design of power system for twoaxle drive hybrid electric vehicle

Author information +
文章历史 +

摘要

1. SAIC General Motors Co., Ltd. Wuhan Branch, Wuhan, Hubei 430070, China; 2. School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China; 3. Air Force Early Warning Academy, Wuhan, Hubei 430070, China; 4. Dongfeng Motor Corporation Technology Center, Wuhan, Hubei 430070, China)

Abstract

 With a traditional fuel vehicle as research platform, the structure of the twoaxle drive hybrid power system was determined. The vehicle control strategy was selected based on the logic threshold, and the all work modes and the torque distribution of vehicle were investigated. The model of the vehicle control strategy was established by Matlab/Simulink. To minimize the fuel consumption per hundred kilometers of engine and the power consumption per hundred kilometers of  drive motor, the improved nondominated sorting genetic algorith( NSGAⅡ) was proposed to optimize the structural parameters and control strategy parameters of the rear axle of vehicle by the optimization software of Isight. The vehicle simulation model was established by AVL Cruise and Matlab/Simulink, and the economic and dynamic proferties of vehicle were simulated. The optimization results show that the overall vehicle dynamic performance is basically consistent with that before optimization, and the overall energy consumption of vehicle is reduced by 5.4%.

关键词

 混合动力汽车 / 两轴驱动 / 参数匹配 / 控制策略 / 优化

Key words

hybrid vehicle / twoaxis drive / parameter matching / control strategy / optimization

引用本文

导出引用
郑晨飞, 姚晓山, 曹晓雨, . 两轴驱动混合动力汽车动力系统的优化设计[J]. 江苏大学学报(自然科学版), 2021, 42(1): 22-27 https://doi.org/10.3969/j.issn.1671-7775.2021.01.004
ZHENG Chenfei, YAO Xiaoshan, CAO Xiaoyu, et al.
Optimization design of power system for twoaxle drive hybrid electric vehicle
[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(1): 22-27 https://doi.org/10.3969/j.issn.1671-7775.2021.01.004

参考文献

[1]张纯, 曾庆玺, 朱浩. 混合动力汽车发展综述J. 机械工程与自动化, 2016(2): 222-224.
ZHANG C,ZENG Q X,ZHU H. Review on development of hybrid electric vehicles J. Mechanical Engineering & Automation,2016(2):222-224. (in Chinese)
[2]邱先文. 混合动力电动汽车发展状况分析及前景研究J. 小型内燃机与车辆技术, 2017,46(3): 70-78,96.
QIU X W. Research on the present situation and prospect of hybrid electrical vehicle J. Small Internal Combustion Engine and Vehicle Technique, 2017, 46(3): 70-78,96.(in Chinese)
[3]郑晨飞, 田韶鹏. 新型两轴驱动混合动力汽车动力系统设计J. 江苏大学学报(自然科学版), 2018,39(4):391-396.
ZHENG C F, TIAN S P. Design of dynamic system for new type twoaxis drive hybrid electric vehicleJ, Journal of Jiangsu University(Natural Science Edition), 2018, 39(4): 391-396. (in Chinese)
[4]PENG J K, HE H W, XIONG R. Study on energy management strategies for seriesparallel plugin hybrid electric busesJ. Energy Procedia, 2015, 75: 1926-1931.
[5]唐建鹏, 秦高林, 段俊法. 混合动力汽车动力系统和策略研究发展现状J. 河南科技, 2017(5):66-68.
TANG J P, QIN G L, DUAN J F.The development of hybrid electric vehicle powertrain and energy management strategy researchJ. Henan Science and Technology, 2017(5): 66-68.(in Chinese)
[6]李婕, 李昊, 赵新蕖. 免疫遗传算法的混合动力汽车多目标优化J. 计算机工程与应用, 2018, 54(4): 237-243,262.
LI J, LI H,ZHAO X Q. Multiobjective optimization of hybrid electrical vehicle based on immune genetic algorithmJ. Computer Engineering and Applications, 2018, 54(4): 237-243,262.(in Chinese)
[7]TIAN S P, WU L, WANG Y. Simultaneous optimization of power train parameter and control strategy in a plugin hybrid electric busC∥SAE 2015 Commercial Vehicle Engineering Congress.USA: SAE,2015-01-2828.
[8]余志生. 汽车理论:M. 5版. 北京: 机械工业出版社, 2009.
[9]王钦普, 杜思宇, 李亮, 等. 基于粒子群算法的插电式混合动力客车实时策略J. 机械工程学报, 2017, 53(4): 77-84.
WANG Q P, DU S Y, LI L, et al. Realtime energy management strategy for Plugin hybrid electric bus on particle swarm optimization algorithmJ. Journal of Mechanical Engineering, 2017, 53(4): 77-84. (in Chinese)

基金

国家“863”计划项目(2011AA11A260)

PDF(6547 KB)

87

Accesses

0

Citation

Detail

段落导航
相关文章

/