FLASH P2P协议及其应用分析

陆莉莉, 季一木, 孙延鹏, 王汝传

江苏大学学报(自然科学版) ›› 2016, Vol. 37 ›› Issue (5) : 585-590.

PDF(3113 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(3113 KB)
江苏大学学报(自然科学版) ›› 2016, Vol. 37 ›› Issue (5) : 585-590. DOI: 10.3969/j.issn.1671-7775.2016.05.015
论文

FLASH P2P协议及其应用分析

作者信息 +

Application and analysis of FLASH P2P protocol

Author information +
文章历史 +

摘要

基于互联网视频流量日夜增多和服务质量得不到保障的问题,提出一种FLASH P2P流量识别模型和 优化方案.从FLASH P2P协议原理、特征提取和流量优化等方面进行了深入研究,并结合优酷、爱奇艺、 搜狐视频等视频网站使用FLASH P2P协议交互和应用效果,重点分析每个网站是如何实现FLASH P2P协议 部署他们的视频服务器,以及在部署服务器时,如何设计和解决流量优化问题.通过抓包试验进行分析 ,研究结果表明:提出的分析方法流量识别率高,流量优化方案可以解决视频网站中存在的流量本地化不 足问题,从而可以提高用户体验,并为互联网视频公司节约了带宽支付成本.

Abstract

To solve the problems that the internet video traffic was increased day by day and the service quality was not guaranteed, a FLASH P2P traffic identification model and optimization scheme were proposed to improve the utilization of network bandwidth resources. FLASH P2P protocol principle,feature extraction and traffic optimization were studied deeply, and the applying effects were analyzed for three major domestic video websites of Youku,Aqiyi and Sohu Video by FLASH P2P protocol interaction. The methods of deploying the video server with FLASH P2P protocol and designing the deployed server to solve optimization problem were specially analyzed. The capturing experiment analysis results show that the proposed analysis method can recognize the flow rate efficiently, and the flow optimization scheme can solve the problem of inadequate video site in the presence of flow localization. The user experience can be improved, and the cost of bandwidth in Internet video company can be decreased.

关键词

流媒体 / 对等计算 / 协议分析 / 特征提取 / 流量优化

Key words

flow media / FLASH P2P / protocol analysis / feature extraction / traffic optimization

引用本文

导出引用
陆莉莉, 季一木, 孙延鹏, . FLASH P2P协议及其应用分析[J]. 江苏大学学报(自然科学版), 2016, 37(5): 585-590 https://doi.org/10.3969/j.issn.1671-7775.2016.05.015
LU Li-Li, JI Yi-Mu, SUN Yan-Peng, et al. Application and analysis of FLASH P2P protocol[J]. Journal of Jiangsu University(Natural Science Edition), 2016, 37(5): 585-590 https://doi.org/10.3969/j.issn.1671-7775.2016.05.015

参考文献

[1]THORNBURGH M. Adobe′s secure realtime media flow protocol draftthornburghadobe
rtmfp09[EB/OL]. (2013-06-28)[2015-10-08].http:∥tools.ietf.org/html/draft-
thornburgh-adobe-rtmfp-09.
[2]鲁刚,张宏莉,叶麟. P2P流量识别[J]. 软件学报,2011,22(6): 1281-1298.
LU G,ZHANG H L,YE L. P2P traffic identification [J]. Journal of Software,2011,22(6):
1281-1298.(in Chinese)
[3]杨楷,汪斌强,张震. 基于多特征的P2P直播流识别方法[J]. 电子技术应用,2014,40(2): 125-
127.
YANG K,WANG B Q,ZHANG Z. A method of identifying P2P live streaming based on union
features[J]. Computer Technology and Its Applications,2014,40(2): 125-127. (in Chinese)
[4]单凯,高仲合,禹继国. 基于节点及流量行为特征的P2P流量识别[J]. 济南大学学报(自然科学版
),2014,28(4):265-269.
SHAN K,GAO Z H,YU J G. Identification of P2P flow based on node and traffic behavior
characteristics[J]. Journal of University of Jinan (Sci & Tech),2014,28(4):265-269. (in
Chinese)
[5]钱亚冠,张旻. 基于过抽样技术的P2P流量识别方法[J]. 电信科学,2014,30(4):109-113.
QIAN Y G,ZHANG M. P2P traffic identification based oversampling technique [J].
Telecommunications Science,2014,30(4):109-113. (in Chinese)
[6]李致远,王汝传. 一种基于机器学习的P2P网络流量识别方法[J]. 计算机研究与发展,2013,48
(12): 2253-2260.
LI Z Y,WANG R C. A P2P network traffic identification approach based on machine learning[
J]. Journal of Computer Research and Development,2013,48 (12): 2253-2260. (in Chinese)
[7]YE W,CHO K. Hybrid P2P traffic classification with heuristic rules and machine
learning[J]. Soft Computing,2014,18(9): 1815-1827.
[8]ZHANG G Q,TANG M D,CHENG S Q,et al. P2P traffic optimization[J]. Science China:
Information Sciences,2012,55(7):1475-1492.
[9]涂睿,苏金树. 一种基于Hash的位置标识映射机制[J]. 计算机工程与科学,2010,30(2):70-74.
TU R,SU J S. A hashbased locator/ID mapping mechanism[J]. Computer Engineering &
Science,2010,30(2):70-74.(in Chinese)

基金

江苏省基础研究计划青年基金资助项目(BK20130876); 南京信息职业技术学院科研基金

资助项目(YK20140402); 江苏省未来网络项目(BY2013095-4-03)


PDF(3113 KB)

87

Accesses

0

Citation

Detail

段落导航
相关文章

/