为研究预应力技术对钢纤维混凝土抗裂性能的增强效果,通过无粘结预应力钢筋钢纤维混凝土简支梁斜截面抗裂性能试验,建立了无粘结预应力钢筋钢纤维混凝土简支梁斜截面抗裂承载力的计算公式;分析了钢纤维含量特征值与剪跨比等因素对无粘结预应力钢筋钢纤维混凝土简支梁斜截面开裂裂缝形态的影响;探讨了钢纤维含量特征值、剪跨比与有效预压力对预应力钢筋混凝土梁的影响程度与规律.研究表明,预应力与钢纤维可以有效提高钢筋混凝土梁的抗裂承载力.一定范围内,斜截面抗裂承载力随钢纤维体积分数和长径比的增大而提高;预应力可延迟剪跨区梁底弯曲裂缝的出现,减小斜裂缝的倾角,增大剪压区高度.
Abstract
In order to study the shear-cracking enhancement effect of prestressed technology to steel fiber reinforced concrete, the practical formulas were proposed for evaluating the shear-cracking capacity of unbonded steelfiber prestressed reinforced concrete beams (UPSFRCB) through the test and analysis of shearcracking strength of UPSFRCB with simply supported ends. Various factors affecting the shear-cracking strength of UPSFRCB with simply supported ends, such as the characteristic value of steel fiber and shear-span to depth ratio, were analyzed. The degrees and rules of the characteristic value of steel fiber, shearspan to depth ratio, and effective prestress force, which affected prestressed concrete beams, were also discussed. The results show that prestress and steel fiber can effectively enhance the shear-cracking capacity of reinforced concrete beams. The shear-cracking load increases with the increase of the steel fiber volume ratio and the length to diameter ratio within a certain range. The prestress can retard the occurrence of bending crack at the beam bottom of the shear span, reduce the inclination angle of the diagonal crack, and increase the height of the shear-compression zone.
关键词
钢纤维混凝土梁 /
无粘结 /
预应力 /
抗裂 /
剪跨比
{{custom_keyword}} /
Key words
steel fiber reinforced concrete beam /
unbonded /
prestress /
shear-cracking strength /
shear-span to depth ratio
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]陈立福,何伟,杨建新,等.低掺量纤维混凝土增强抗裂性能试验研究[J].混凝土, 2008(7): 75-77.
Chen Lifu, He Wei, Yang Jianxin, et al. Experimental study on crack resistance reinforcement of low doping fiber concrete [J]. Concrete, 2008(7): 75-77. (in Chinese)
[2]Barros J A O, Figueiras J A. Flexural behavior of SFRC: testing and modeling [J]. Journal of Materials in Civil Engineering, 1999, 11(4): 331-339.
[3]黄海荣,张昊.无粘结预应力粮食立筒仓算例分析[J]. 河南工业大学学报:自然科学版,2007, 28(4): 73-76.
Huang Hairong, Zhang Hao. The calculation analysis of noncoherent prestressed concrete grain silo [J]. Journal of Henan University of Technology: Natural Science Edition, 2007, 28(4): 73-76. (in Chinese)
[4]杨小平,刘荣桂,吕志涛.裂缝对预应力混凝土结构耐久性影响的试验研究[J]. 江苏大学学报:自然科学版,2002, 23(6): 90-94.
Yang Xiaoping, Liu Ronggui, Lü Zhitao. Experimental study on the influence of crack on durability of prestressed concrete structure [J]. Journal of Jiangsu University: Natural Science Edition, 2002, 23(6): 90-94. (in Chinese)
[5]Toutanji H, Saafi M. Performance of concrete beams prestressed with aramid fiberreinforced polymer tendons [J]. Composite Structures, 1999, 44(1): 63-70.
[6]金立兵.预应力钢筋钢纤维混凝土简支梁力学性能的研究[D]. 昆明:昆明理工大学建筑工程学院,2002.
[7]Adhikary B B, Mutsuyoshi H. Prediction of shear strength of steel fiber RC beams using neural networks [J]. Construction and Building Materials, 2006, 20(9): 801-811.
[8]Barr P J, Kukay B M, Halling M W. Comparison of prestress losses for a prestress concrete bridge made with highperformance concrete [J]. Journal of Bridge Engineering, 2008, 13(5): 468-475.
[9]Maaddawy T E, Soudki K. Strengthening of reinforced concrete slabs with mechanicallyanchored unbonded FRP system [J]. Construction and Building Materials, 2008, 22(4): 444-455.
[10]赵顺波,赵国藩,黄承逵. 预应力钢纤维混凝土梁斜截面抗裂试验和计算方法[J].水利学报,1998, 29(1): 56-61.
Zhao Shunbo, Zhao Guofan, Huang Chengkui. Experimental study on shear cracking strength of prestressed steel fiber reinforced concrete beams [J]. Shuili Xuebao, 1998, 29(1): 56-61. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
河南省自然科学基金资助项目(0311051500); 河南省重点科技攻关项目(0423023700)
{{custom_fund}}