基于多目标PID的拖挂式房车差动制动控制系统设计

徐兴1,2, 糜杰1, 王峰1,2, 马世典1,2, 陶涛3

江苏大学学报(自然科学版) ›› 2020, Vol. 41 ›› Issue (2) : 172-180.

PDF(2953 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(2953 KB)
江苏大学学报(自然科学版) ›› 2020, Vol. 41 ›› Issue (2) : 172-180. DOI: 10.3969/j.issn.1671-7775.2020.02.009
论文

基于多目标PID的拖挂式房车差动制动控制系统设计

作者信息 +

Design of differential braking control system of travel trailer based on multi-objective PID

Author information +
文章历史 +

摘要

为了保证拖挂式房车制动时具有良好的横摆稳定性及行驶路径,提出以房车铰接角和横摆角速度为控制目标的差动制动控制方法.考虑电磁制动器机电耦合特性,建立了基于线性六自由度的牵引车房车转向制动力学模型;建立拖挂式房车稳态行驶时铰接角模型,引入多目标PID加权控制算法和多目标PID协调控制算法,应用差值制动控制横摆力矩的原理,使房车铰接角和横摆角速度准确跟随目标期望值,实现房车制动时具有良好的横摆稳定性及行驶路径.基于TruckSim与Simulink的联合,进行了脉冲、阶跃转向工况下的仿真试验.仿真结果表明,提出的加权控制和协调控制均能保证拖挂式房车在制动时具有良好的行驶路径及横摆稳定性;相比于无差动制动,这两者使房车相对横摆角减小约25%;相比于以横摆角速度为目标的差动制动,这两者使房车的行驶路径偏差减小约20%.

Abstract

To achieve good yaw stability and trajectory of travel trailer during braking, a differential braking control method was proposed to optimize the hinged angle and the yaw angular velocity performance for the travel trailer. Considering the electromechanical coupling characteristics of electromagnetic brake, a 6 DOF tractor-travel trailer braking model was established. The model of articulation angle of travel trailer in steady state was established, and the multi-objective PID weighted control algorithm and the multi-objective PID coordinated control algorithm were introduced. The principle of differential braking was applied to control the yaw moment and make the articulated angle and yaw velocity of travel trailer accurately follow the expected value of the target, and the good trajectory and yaw stability was achieved during the braking of travel trailer. Based on the co-simulation of TruckSim and Simulink, the simulation tests of step and pulse steering were carried out. The simulation results show that weighted control and coordinated control can guarantee the tractor trailer with good trajectory and yaw stability during braking. Compared with non-differential braking control, the two control algorithms can reduce the relative yaw rate of travel trailer by about 25%. Compared with the differential braking with yaw rate as control target, the trajectory deviation of travel trailer under the two control algorithms is reduced by about 20%.

关键词

拖挂式房车 / 差动制动 / 横摆角速度 / 铰接角 / 多目标PID / 加权控制 / 协调控制

Key words

travel trailer
/ differential braking / yaw rate / articulated angle / multi-objective PID /
weighted control
/ coordinated control

引用本文

导出引用
徐兴1, 2, 糜杰1, . 基于多目标PID的拖挂式房车差动制动控制系统设计[J]. 江苏大学学报(自然科学版), 2020, 41(2): 172-180 https://doi.org/10.3969/j.issn.1671-7775.2020.02.009
XU Xing1, 2, MI Jie1, et al. Design of differential braking control system of travel trailer based on multi-objective PID[J]. Journal of Jiangsu University(Natural Science Edition), 2020, 41(2): 172-180 https://doi.org/10.3969/j.issn.1671-7775.2020.02.009

参考文献

[1]NILSSON P, TAGESSON K. Single-track models of an A-double heavy vehicle combination[R]. Gteborg:Chalmers University of Technology, 2014:1-16.
[2]杨炜,马浩越,郭祥靖. 基于TruckSim与Simulink联合仿真的半挂汽车列车横向稳定性控制[J]. 中国科技论文, 2018,13(4):390-398.
YANG W, MA H Y, GUO X J. Semi-trailer lateral stability control based on TruckSim and Simulink co-simulation[J]. China Sciencepaper, 2018,13(4):390-398. (in Chinese)
[3]龙佳庆,韦超毅. 基于滑模变结构控制法的半挂汽车列车高速行驶稳定性研究[J]. 广西科技师范学院学报, 2016, 31(2):142-144.
LONG J Q, WEI C Y. The research on the high speed stability of the semi-dragging trucks based on the sliding mode variable structure control[J]. Journal of Guangxi Science and Technology Normal University, 2016, 31(2):142-144. (in Chinese)
[4]张义花. 双挂汽车列车横向失稳机理分析及在环控制策略研究[D]. 长春:吉林大学, 2017.
[5]LI B, RAKHEJA S. Jackknifing prevention of tractor-semitrailer combination using active braking control[C]∥Proceedings of the 2015 SAE Commercial Vehicle Engineering Congress. [S.l.]:SAE International,doi:10.4271/2015-01-2746.
[6]KIM K, GUAN H, WANG B, et al. Active steering control strategy for articulated vehicles[J]. Frontiers of Information Technology and Electronic Engineering, 2016, 17(6):576-586.
[7]MORAN A. Autonomous path following of truck-trailer vehicles using linear-fuzzy control[C]∥Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics. Piscataway:IEEE, 2017:651-657.
[8]刘春辉,关志伟,杜峰,等. 四轮转向半挂汽车列车横向稳定性的模糊PID控制[J]. 现代制造工程,2016(7):47-50.
LIU C H, GUAN Z W, DU F, et al. The fuzzy PID direct yaw-moment control of four-wheel steering tractor-semitrailer[J]. Modern Manufacturing Engineering, 2016(7):47-50. (in Chinese)
[9]于志新,程新新,李杰,等. 基于MPC的重型液罐车侧向稳定性控制仿真[J]. 长春工业大学学报, 2018, 39(3):224-232.
YU Z X, CHENG X X, LI J, et al. Simulation analysis of lateral stability for liquid tank truck based on model predictive control(MPC)[J]. Journal of Changchun University of Technology, 2018, 39(3):224-232. (in Chinese)
[10]刘春辉,关志伟,杜峰,等. 半挂汽车列车横向稳定性鲁棒H∞最优控制[J]. 现代制造工程, 2016(5):25-29.
LIU C H, GUAN Z W, DU F, et al. The robust H∞optimal control of tractor-semitrailer steering stability[J]. Modern Manufacturing Engineering, 2016(5):25-29.(in Chinese)
[11]邢栋. 基于神经网络的半挂汽车列车稳定性控制研究[D]. 长春:长春工业大学, 2016.
[12]苏楠. 半挂汽车列车转弯制动控制策略研究[D]. 西安:长安大学, 2017.

基金

江苏大学校企合作项目(20170013)

PDF(2953 KB)

85

Accesses

0

Citation

Detail

段落导航
相关文章

/