以栽有番茄作物的Venlo型两连栋玻璃温室为研究对象,基于计算流体动力学(CFD)技术,运用多孔介质模型、组分传输模型及DO辐射模型对自然通风工况下温室内湿空气的传输过程进行了3D数值模拟,并对模拟结果进行了试验验证.结果表明:温室中部测点气流速度的模拟值与实测值变化趋势相同,总气流速度和y向气流速度的模拟值与实测值平均相对误差分别为150%和109%,所建立的CFD模型有效.温室南部气流紊流程度高,存在大小不等的涡;北侧流速均匀;温室中部作物区及冠层上方气流流动平缓,作物冠层阻力对室内气流分布模式有影响.靠近侧窗的温室空间以风压通风为主,作物冠层及侧窗上部空间热压作用明显.
Abstract
The 3D numerical simulations were done based on the CFD technique for the natural ventilated Venlo glasshouse with tomato crops. The porous medium model was used for tomato crops, and the humid air transfer was simulated based on the species transfer and the DO radiation model. The measured values were used to validate the CFD model. The results show that the same trend is found for the airflow velocity for both simulated and the measured values in the middle of glasshouse. The average relative error is 150% and 109% for the total airflow velocity and the y component, respectively. The CFD model is validated. The airflow is turbulent and the air vortexes are observed near the south volume. However, it is balanced near the north and the crop level. Crop canopy drag affects the airflow patterns. The wind effect plays a role near the sidevent, but the buoyant effect is obvious in the volume above the crop level and the sidevent.
关键词
/
温室 /
通风 /
气流 /
CFD /
模拟
{{custom_keyword}} /
Key words
glasshouse /
ventilation /
airflow /
CFD /
simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Kittas C, Bartzanas T. Greenhouse microclimate and dehumidification effectiveness under different ventilator configurations [J]. Building and Environment, 2007, 42: 3774-3784.
[2]Kim Keesung, Yoona Jeongyeol, Kwon Hyuckjin, et al. 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifers [J]. Biosystems Engineering, 2008, 100:245-255.
[3]沈明卫,郝飞麟.自然通风下栽培番茄的单栋温室内气流场稳态模拟[J].农业机械学报,2006,37(5): 101-105.
Shen Mingwei, Hao Feilin. Steady state numerical simulation of airflow pattern in natural ventilated tunnel greenhous[J]. Transactions of the CSAM, 2006,37(5):101-105. (in Chinese)
[4]Bartzanas T, Boulard T, Kittas C. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insectproof screen in the openings[J]. Computers and Electronics in Agriculture, 2002, 34: 207-221.
[5]程秀花, 毛罕平, 伍德林,等.玻璃温室自然通风热环境时空分布数值模拟[J]. 农业机械学报,2009,40(6): 179-183.
Cheng Xiuhua, Mao Hanping, Wu Delin, et al. Numerical simulation of thermal profiles in spatial and temporal field for natural ventilated glasshouse [J]. Transactions of the CSAM, 2009, 40(6): 179-183.(in Chinese)
[6]李先庭,李晓锋,彦启森.一种求解湿空气温度和相对湿度的CFD算法[J]. 暖通空调, 2000,30(2):66-68.
Li Xianting, Li Xiaofeng,Yan Qisen. CFD algorithm for wet air temperature and relative humidity calculation [J]. Heating Ventilating & Air Conditioning, 2000, 30(2):66-68. (in Chinese)
[7]王福军.计算流体动力学分析—CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004:122.
[8]Boulard T, Wang S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel [J]. Computers and Electronics in Agriculture, 2002, 34: 173-190.
[9]Molina Aiz F D, Valera D L, Alvarez A J. A wind tunnel study of airflow through horticultural crops: determination of the drag coefficient [J]. Biosystems Engineering, 2006, 93 (4): 447-457.
[10]Josef Tanny, Shabtai Cohen, Meir Teite. Screenhouse microclimate and ventilation: an experimental study [J]. Biosystems Engineering,2003, 84 (3):331-341.
[11]Miguel A F. Airflow through porous screens: from theory to practical considerations [J]. Energy Building, 1998, 28(1):63-69.
[12]Brundrett E. Prediction of pressure drop for incompressible flow through screens [J]. ASME Journal of Fluids Engineering, 1993, 115(2):239-242.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
高等学校博士学科点专项科研基金资助项目(200802990009); 江苏大学现代农业装备与技术重点实验室开放基金资助项目(NZ200802); 江苏省科技攻关计划项目(BE2007304)
{{custom_fund}}