动态称量信号小波变换强制性阈值去噪方法

张西良, 杨伟玲, 李萍萍 , 张世庆 , 徐云峰

江苏大学学报(自然科学版) ›› 2009, Vol. 30 ›› Issue (3) : 228-231.

PDF(262 KB)
全国中文核心期刊
中国科技核心期刊
RCCES核心期刊
SCD核心期刊
PDF(262 KB)
江苏大学学报(自然科学版) ›› 2009, Vol. 30 ›› Issue (3) : 228-231. DOI: 10.3969/j.issn.1671-7775.2009.03.003
论文

动态称量信号小波变换强制性阈值去噪方法

作者信息 +

Compelling threshold denoise method of wavelet transformation  on dynamic weight signal

Author information +
文章历史 +

摘要

针对目前离散小波变换阈值去噪仍保留较多的噪声或者产生不期望的震荡等问题,通过对离散小波变换阈值去噪效果分析,提出适合动态称量信号特点的强制性阈值去噪方法,建立强制性阈值去噪分解重构算法,并应用MATLAB语言实现.试验表明:动态称量信号去噪后得到的质量值稳定性较好,相对误差在一1.5%~2.0%之间,且动态称量信号数据处理速度得到提高.
 

Abstract

To solve the problem of much noise and unwanted shaking remained after threshold denoising on dynamic weight signal, and by analyzing the effect of threshold denoise method of wavelet transform, the compelling threshold suitable for dynamic weight signal was put forward. The decomposition and re- construction arithmetic of the compelling threshold was realized using MATLAB language. The result indicates that after denoising the stability of the weighting value is better, the relative error is between -1.5% -2.0% , and the processing speed of dynamic weight signal is improved to certain extent.
 

关键词

称量 / 小波变换 / 强制性阈值去噪 / MATLAB

Key words

weighting / wavelet transform / compellent threshold denoise / MATLAB ;

引用本文

导出引用
张西良, 杨伟玲, 李萍萍 , . 动态称量信号小波变换强制性阈值去噪方法[J]. 江苏大学学报(自然科学版), 2009, 30(3): 228-231 https://doi.org/10.3969/j.issn.1671-7775.2009.03.003
Zhang Xiliang, Yang-Weiling, Li-Pingping- , et al. Compelling threshold denoise method of wavelet transformation  on dynamic weight signal[J]. Journal of Jiangsu University(Natural Science Edition), 2009, 30(3): 228-231 https://doi.org/10.3969/j.issn.1671-7775.2009.03.003

参考文献

[1]施昌彦.动态称重测力技术的现状和发展趋势[J].计量学报,:.

[2]周志峰 蔡萍 许嘉 等.EMD方法在汽车动态称重中的应用[J].数据采集与处理,2005,20(3):338-341.

[3]樊友平 陈允平 柴毅 黄席樾 韩逢庆 高波.火箭飞行实时测量数据的小波滤波快速算法[J].数据采集与处理,2004,19(4):82-85.

[4]Berkner K,Wells R O.Smoothess estimates for soft threshold denoising via translation invariant wavelettransforms[J].Applied and Computational Harmonic Analysis,2002,12 (1):1-24.

[5]刘亚峰 徐伯庆 贾嘉.基于Matlab的小波变换在图像压缩中的应用[J].计算机与现代化,2005(6):10-12.

[6]Averkamp R,Houdré C.Wavelet thresholding for non (necessarily) gaussian noise:A preliminary report[R].Atlanta,Georgia Inst Technol,1996.

[7]Donoho D L.Denoising by soft thresholding[J].IEEE Transaction on Information Theory,1995,41:613-627.

[8]Sardy S.Minimax threshold for denoising complex signals with waveshrink[J].IEEE Trans Signal Processing,2000,48:1023-1028.

[9]Mallat S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.

基金

江苏省教育厅自然科学基金资助项目(03KJD410071);江苏大学高级专业人才科研启动基金资助项目(08JDG048);江苏大学大学生科研基金资助项目(05A039).
 


PDF(262 KB)

92

Accesses

0

Citation

Detail

段落导航
相关文章

/