[1]Arbelo E, Protonotarios A, Gimeno JR, et al. 2023 ESC Guidelines for the management of cardiomyopathies[J]. Eur Heart J, 2023, 44(37): 3503-3626.
[2]中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578.
[3]Amiya E, Morita H. Simple way of identifying highrisk group of heart failure in hypertrophic cardiomyopathy in the Japanese population[J]. Circ J, 2022, 86(12): 1941-1942.
[4]EspinolaZavaleta N, Vega A, Basto DM, et al. Survival and clinical behavior of hypertrophic cardiomyopathy in a Latin Aamerican cohort in contrast to cohorts from the developed world[J]. J Cardiovasc Ultrasound, 2015, 23(1): 20-26.
[5]Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and analysis[J]. Brief Bioinform, 2021, 22(2): 1706-1728.
[6]Altesha MA, Ni T, Khan A, et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol, 2019, 234(5): 5588-5600.
[7]Shao Y, Jiang Y. Circular RNAs in toxicology[J]. Toxicol Sci, 2021, 179(2): 149-161.
[8]Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs[J]. EMBO J, 2019, 38(16): e100836.
[9]Meng H, Niu R, Huang C, et al. Circular RNA as a novel biomarker and therapeutic target for HCC[J]. Cells, 2022, 11(12): 1948.
[10]Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5): 453-461.
[11]Tang X, Ren H, Guo M, et al. Review on circular RNAs and new insights into their roles in cancer[J]. Comput Struct Biotechnol J, 2021, 19: 910-928.
[12]Yang T, Qiu L, Chen S, et al. Circ_PIAS1 promotes the apoptosis of ALVJ infected DF1 cells by upregulating miR183[J]. Genes (Basel), 2023, 14(6): 1260.
[13]Jiang L, Wang X, Zhan X, et al. Advance in circular RNA modulation effects of heart failure[J]. Gene X, 2020, 5: 100036.
[14]Lian K, Furulund BMN, Tveita AA, et al. Mobile group I introns at nuclear rDNA position L2066 harbor sense and antisense homing endonuclease genes intervened by spliceosomal introns[J]. Mob DNA, 2022, 13(1): 23.
[15]Zhou M, Xiao MS, Li Z, et al. New progresses of circular RNA biology: from nuclear export to degradation[J]. RNA Biol, 2021, 18(10): 1365-1373.
[16]Sygitowicz G, Sitkiewicz D. Involvement of circRNAs in the development of heart failure[J]. Int J Mol Sci, 2022, 23(22): 14129.
[17]Zheng S, Zhang X, Odame E, et al. CircRNAprotein interactions in muscle development and diseases[J]. Int J Mol Sci, 2021, 22(6): 3262.
[18]Zhang S, Long F, Lin H, et al. Regulatory roles of phytochemicals on circular RNAs in cancer and other chronic diseases[J]. Pharmacol Res, 2021, 174: 105936.
[19]Cao C, Wang Y, Wu X, et al. The roles and mechanisms of circular RNAs related to mTOR in cancers[J]. J Clin Lab Anal, 2022, 36(12): e24783.
[20]Sun X, Kang Y, Li M, et al. The emerging regulatory mechanisms and biological function of circular RNAs in skeletal muscle development[J]. Biochim Biophys Acta Gene Regul Mech, 2022, 1865(8): 194888.
[21]邱双洋, 臧雪燕, 张帆, 等. 外泌体环状RNA在肿瘤耐药中的作用研究进展[J]. 江苏大学学报(医学版), 2024, 34(3): 271-276.
[22]Njoroge JN, Mangena JC, Aribeana C, et al. Emerging genotypephenotype associations in dilated cardiomyopathy[J]. Curr Cardiol Rep, 2022, 24(9): 1077-1084.
[23]Zeng Z, Xia L, Fan S, et al. Circular RNA circMAP3K5 acts as a microRNA223p sponge to promote resolution of intimal hyperplasia via TET2mediated smooth muscle cell differentiation[J]. Circulation, 2021, 143(4): 354-371.
[24]Costa MC, CalderonDominguez M, Mangas A, et al. Circulating circRNA as biomarkers for dilated cardiomyopathy etiology[J]. J Mol Med (Berl), 2021, 99(12): 1711-1725.
[25]Sun W, Han B, Cai D, et al. Differential expression profiles and functional prediction of circular RNAs in pediatric dilated cardiomyopathy[J]. Front Mol Biosci, 2020, 7: 600170.
[26]Maron BA, Wang RS, Carnethon MR, et al. What causes hypertrophic cardiomyopathy?[J]. Am J Cardiol, 2022, 179: 74-82.
[27]Wu S, Ud Din I, Sadiq FM, et al. Dysfunctional network of hub genes in hypertrophic cardiomyopathy patients[J]. Am J Transl Res, 2022, 14(12): 8918-8933.
[28]Gong K, Yang K, Xie T, et al. Identification of circRNAmiRNAmRNA regulatory network and its role in cardiac hypertrophy[J]. PLoS One, 2023, 18(3): e0279638.
[29]Feng W, Han S. LncRNA ADAMTS9AS1/circFN1 competitively binds to miR206 to elevate the expression of ACTB, thus inducing hypertrophic cardiomyopathy[J]. Oxid Med Cell Longev, 2022, 2022: 1450610.
[30]Guo L, Cai Y, Wang B, et al. Characterization of
the circulating transcriptome expression profile and identification of novel miRNA biomarkers in hypertrophic cardiomyopathy[J]. Eur J Med Res, 2023, 28(1): 205.
[31]Guo Q, Wang J, Sun R, et al. Comprehensive construction of a circular RNAassociated competing endogenous RNA network identified novel circular RNAs in hypertrophic cardiomyopathy by integrated analysis[J]. Front Genet, 2020, 11: 764.
[32]Sonnenschein K, Wilczek AL, de GonzaloCalvo D, et al. Serum circular RNAs act as bloodbased biomarkers for hypertrophic obstructive cardiomyopathy[J]. Sci Rep, 2019, 9(1): 20350.
[33]Zhu M, Zhang C, Zhang Z, et al. Changes in transcriptomic landscape in human endstage heart failure with distinct etiology[J]. iScience, 2022, 25(3): 103935.
[34]Van Der Voorn SM, Te Riele ASJM, Basso C, et al. Arrhythmogenic cardiomyopathy: pathogenesis, proarrhythmic remodelling, and novel approaches for risk stratification and therapy[J]. Cardiovasc Res, 2020, 116(9): 1571-1584.
[35]PiquerGil M, DomenechDauder S, SepúlvedaGómez M, et al. Non coding RNAs as regulators of Wnt/βcatenin and Hippo pathways in arrhythmogenic cardiomyopathy[J]. Biomedicines, 2022, 10(10): 2619.
[36]Ahmadi M, Pashangzadeh S, Moraghebi M, et al. Construction of circRNAmiRNAmRNA network in the pathogenesis of recurrent implantation failure using integrated bioinformatics study[J]. J Cell Mol Med, 2022, 26(6): 1853-1864.
[37]Jost I, Shalamova, LA, Gerresheim, GK, et al. Functional sequestration of microRNA122 from hepatitis C virus by circular RNA sponges[J]. RNA Biol, 2018, 15(8): 1032-1039.
|