[1]Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53.
[2]Early Breast Cancer Trialists′ Collaborative Group (EBCTCG). Effect of radiotherapy after breastconserving surgery on 10year recurrence and 15year breast cancer death: metaanalysis of individual patient data for 10,801 women in 17 randomised trials[J]. Lancet, 2011, 378(9804): 1707-1716.
[3]EBCTCG (Early Breast Cancer Trialists′ Collaborative Group). Effect of radiotherapy after mastectomy and axillary surgery on 10year recurrence and 20year breast cancer mortality: metaanalysis of individual patient data for 8135 women in 22 randomised trials[J]. Lancet, 2014, 383(9935): 2127-2135.
[4]Karlsen J, Tandstad T, Sowa P, et al. Pneumonitis and fibrosis after breast cancer radiotherapy: occurrence and treatmentrelated predictors[J]. Acta Oncol, 2021, 60(12): 1651-1658.
[5]Karlsen J, Tandstad T, Steinshamn S, et al. Pulmonary function and lung fibrosis up to 12 years after breast cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2024, 118(4): 1066-1077.
[6]Ksmann L, Dietrich A, StaabWeijnitz CA, et al. Radiationinduced lung toxicity—cellular and molecular mechanisms of pathogenesis, management, and literature review[J]. Radiat Oncol, 2020, 15(1): 214.
[7]Rahi MS, Parekh J, Pednekar P, et al. Radiationinduced lung injurycurrent perspectives and management[J]. Clin Pract, 2021, 11(3): 410-429.
[8]McKenzie E, Razvi Y, Wronski M, et al. Trends and correlates of mean lung dose in patients receiving breast radiotherapy in a single institution from 2014 to 2018[J]. Clin Oncol (R Coll Radiol), 2020, 32(10): 647-655.
[9]Avanzo M, Barbiero S, Trovo M, et al. Voxelbyvoxel correlation between radiologically radiation induced lung injury and dose after imageguided, intensity modulated radiotherapy for lung tumors[J]. Phys Med, 2017, 42: 150-156.
[10]喻洁, 李卿, 曾道林, 等. 乳腺癌改良根治术后内乳淋巴结放疗患者VMAT与IMRT计划剂量学比较[J]. 中华放射肿瘤学杂志, 2020, 29(11): 978-981.
[11]高艳, 钟鹤立, 李壮玲, 等. 乳腺癌改良根治术后容积调强弧形治疗与调强放疗剂量比较的Meta分析[J]. 中华放射肿瘤学杂志, 2021, 30(11): 1159-1166.
[12]Cheng HW, Chang CC, Shiau AC, et al. Dosimetric comparison of helical tomotherapy, volumetricmodulated arc therapy, intensitymodulated radiotherapy, and fieldinfield technique for synchronous bilateral breast cancer[J]. Med Dosim, 2020, 45(3): 271-277.
[13]Abdollahi S, Hadizadeh Yazdi MH, Mowlavi AA, et al. A dose planning study for cardiac and lung dose sparing techniques in left breast cancer radiotherapy: Can free breathing helical tomotherapy be considered as an alternative for deep inspiration breath hold?[J]. Tech Innov Patient Support Radiat Oncol, 2023, 25: 100201.
[14]Sudha SP, Seenisamy R, Bharadhwaj K. Comparison of dosimetric parameters of volumetric modulated arc therapy and threedimensional conformal radiotherapy in postmastectomy patients with carcinoma breast[J]. J Cancer Res Ther, 2018, 14(5): 1005-1009.
[15]Kim SJ, Lee MJ, Youn SM. Radiation therapy of synchronous bilateral breast carcinoma (SBBC) using multiple techniques[J]. Med Dosim, 2018, 43(1): 55-68.
[16]Becker SJ, Elliston C, Dewyngaert K, et al. Breast radiotherapy in the prone position primarily reduces the maximum outoffield measured dose to the ipsilateral lung[J]. Med Phys, 2012, 39(5): 2417-2423.
[17]Kourinou KM, Mazonakis M, Lyraraki E, et al. Scattered dose to radiosensitive organs and associated risk for cancer development from head and neck radiotherapy in pediatric patients[J]. Phys Med, 2013, 29(6): 650-655.
[18]Kry SF, Salehpour M, Followill DS, et al. The calculated risk of fatal secondary malignancies from intensitymodulated radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2005, 62(4): 1195-1203.
[19]Haciislamoglu E, Cinar Y, Gurcan F, et al. Secondary cancer risk after wholebreast radiation therapy: fieldinfield versus intensity modulated radiation therapy versus volumetric modulated arc therapy[J]. Br J Radiol, 2019, 92(1102): 20190317.
[20]Fogliata A, De Rose F, Franceschini D, et al. Critical appraisal of the risk of secondary cancer induction from breast radiation therapy with volumetric modulated arc therapy relative to 3D conformal therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 100(3): 785-793.
[21]Bartolucci L, Adrien C, Goudjil F, et al. Dosimetric comparison of four high performance techniques for irradiation of breast cancer patients[J]. Cancer Radiother, 2021, 25(3): 254-258.
[22]Santos AMC, Kotsanis A, Cunningham L, et al. Estimating the second primary cancer risk due to proton therapy compared to hybrid IMRT for left sided breast cancer[J]. Acta Oncol, 2021, 60(3): 300-304.
[23]Speleers BA, Belosi FM, De Gersem WR, et al. Comparison of supine or prone crawl photon or proton breast and regional lymph node radiation therapy including the internal mammary chain[J]. Sci Rep, 2019, 9(1): 4755.
[24]Verma V, Vicini F, Tendulkar RD, et al. Role of internal mammary node radiation as a part of modern breast cancer radiation therapy: a systematic review[J]. Int J Radiat Oncol Biol Phys, 2016, 95(2): 617-631.
[25]Dasu A, Flejmer AM, Edvardsson A, et al. Normal tissue sparing potential of scanned proton beams with and without respiratory gating for the treatment of internal mammary nodes in breast cancer radiotherapy[J]. Phys Med, 2018, 52: 81-85.
[26]Lee HL, Lim LH, Master Z, et al. The role of breath hold intensity modulated proton therapy for a case of leftsided breast cancer with IMN involvement. How protons compare with other conformal techniques?[J]. Tech Innov Patient Support Radiat Oncol, 2020, 15: 1-5.
[27]Austin AM, Douglass MJJ, Nguyen GT, et al. Individualised selection of leftsided breast cancer patients for proton therapy based on costeffectiveness[J]. J Med Radiat Sci, 2021, 68(1): 44-51.
[28]Lai J, Hu S, Luo Y, et al. Metaanalysis of deep inspiration breath hold (DIBH) versus free breathing (FB) in postoperative radiotherapy for leftside breast cancer[J]. Breast Cancer, 2020, 27(2): 299-307.
[29]Lu Y, Yang D, Zhang X, et al. Comparison of deep inspiration breath hold versus free breathing in radiotherapy for left sided breast cancer[J]. Front Oncol, 2022, 12: 845037.
[30]胡皓, 李敏儿, 肖光莉. 深吸气屏气技术在左侧乳腺癌术后放疗中的应用[J]. 现代肿瘤医学, 2020, 28(13): 2318-2322.
[31]唐成琼, 吴恒, 艾秀清, 等. 左侧乳腺癌保留乳房术后调强放疗两种呼吸模式剂量学研究[J]. 中华肿瘤防治杂志, 2019, 26(19): 1462-1467.
[32]Goyal U, Saboda K, Roe D, et al. Prone positioning with deep inspiration breath hold for left breast radiotherapy[J]. Clin Breast Cancer, 2021, 21(4): e295-e301.
[33]Oechsner M, Düsberg M, Borm KJ, et al. Deep inspiration breathhold for leftsided breast irradiation: Analysis of dosemass histograms and the impact of lung expansion[J]. Radiat Oncol, 2019, 14(1): 109.
[34]Pandeli C, Smyth LML, David S, et al. Dose reduction to organs at risk with deepinspiration breathhold during right breast radiotherapy: a treatment planning study[J]. Radiat Oncol, 2019, 14(1): 223.
[35]Conway JL, Conroy L, Harper L, et al. Deep inspiration breathhold produces a clinically meaningful reduction in ipsilateral lung dose during locoregional radiation therapy for some women with rightsided breast cancer[J]. Pract Radiat Oncol, 2017, 7(3): 147-153.
[36]Lawler G, Leech M. Dose sparing potential of deep inspiration breathhold technique for left breast cancer radiotherapy organsatrisk[J]. Anticancer Res, 2017, 37(2): 883-890.
[37]Czeremszyńska B, Drozda S, Górzyński M, et al. Selection of patients with left breast cancer for deepinspiration breathhold radiotherapy technique: Results of a prospective study[J]. Rep Pract Oncol Radiother, 2017, 22(5): 341-348.
[38]S Nair S, Devi VNM, Sharan K, et al. A dosimetric study comparing different radiotherapy planning techniques with and without deep inspiratory breath hold for breast cancer[J]. Cancer Manag Res, 2022, 14: 3581-3587.
[39]Matsumoto Y, Kunieda E, Futakami N, et al. Dose and organ displacement comparisons with breast conservative radiotherapy using abdominal and thoracic deepinspiration breathholds: A comparative dosimetric study[J]. J Appl Clin Med Phys, 2023, 24(4): e13888.
[40]Mutu E, Akiba T, Matsumoto Y, et al. Effect on heart and lung doses reduction of abdominal and thoracic deep inspiratory breathhold assuming involvedfield radiation therapy in patients with simulated esophageal cancer[J]. Tokai J Exp Clin Med, 2023, 48(1): 32-37.
[41]Saini AS, Hwang CS, Biagioli MC, et al. Evaluation of sparing organs at risk (OARs) in leftbreast irradiation in the supine and prone positions and with deep inspiration breathhold[J]. J Appl Clin Med Phys, 2018, 19(4): 195-204.
[42]Lai J, Zhong F, Deng J, et al. Prone position versus supine position in postoperative radiotherapy for breast cancer: A metaanalysis[J]. Medicine (Baltimore), 2021, 100(20): e26000.
[43]Yan SX, Maisonet OG, Perez CA, et al. Radiation effect on late cardiopulmonary toxicity: An analysis comparing supine DIBH versus prone techniques for breast treatment[J]. Breast J, 2020, 26(5): 897-903.
[44]Wang X, FargierBochaton O, Dipasquale G, et al. Is prone free breathing better than supine deep inspiration breathhold for left wholebreast radiotherapy? A dosimetric analysis[J]. Strahlenther Onkol, 2021, 197(4): 317-331.
[45]Schoepen M, Speleers B, De Neve W, et al. Four irradiation and three positioning techniques for wholebreast radiotherapy: Is sophisticated always better?[J]. J Appl Clin Med Phys, 2022, 23(11): e13720.
[46]Wang W, Bin LJ, Hu HG, et al. Evaluation of dosimetric variance in whole breast forwardplanned intensitymodulated radiotherapy based on 4DCT and 3DCT[J]. J Radiat Res, 2013, 54(4): 755-761.
[47]Guo B, Li JB, Wang W, et al. A comparison of dosimetric variance for externalbeam partial breast irradiation using threedimensional and fourdimensional computed tomography[J]. Onco Targets Ther, 2016, 9: 1857-1863.
[48]Yan Y, Lu Z, Liu Z, et al. Dosimetric comparison between three and fourdimensional computerised tomography radiotherapy for breast cancer[J]. Oncol Lett, 2019, 18(2): 1800-1814.
[49]Chau OW, Fakir H, Lock M, et al. Dosimetric planning comparison for leftsided breast cancer radiotherapy: the clinical feasibility of fourdimensionalcomputed tomographybased treatment planning optimization[J]. Cureus, 2022, 14(5): e24777.
[50]Blom Goldman U, Svane G, Anderson M, et al. Longterm functional and radiological pulmonary changes after radiation therapy for breast cancer[J]. Acta Oncol, 2014, 53(10): 1373-1379.
[51]SnchezNieto B, Goset KC, Caviedes I, et al. Predictive models for pulmonary function changes after radiotherapy for breast cancer and lymphoma[J]. Int J Radiat Oncol Biol Phys, 2012, 82(2): e257-264.
[52]Zhou ZR, Han Q, Liang SX, et al. Dosimetric factors and Lyman normaltissue complication modelling analysis for predicting radiationinduced lung injury in postoperative breast cancer radiotherapy: a prospective study[J]. Oncotarget, 2017, 8(20): 33855-33863.
[53]Verbanck S, Van Parijs H, Schuermans D, et al. Lung restriction in patients with breast cancer after hypofractionated and conventional radiation therapy: a 10year followup[J]. Int J Radiat Oncol Biol Phys, 2022, 113(3): 561-569.
[54]Yilmaz U, Koylu M, Savas R, et al. Imaging features of radiationinduced lung disease and its relationship with clinical and dosimetric factors in breast cancer patients[J]. J Cancer Res Ther, 2023, 19(Supplement): S0.
[55]Ozgen Z, Orun O, Atasoy BM, et al. Radiation pneumonitis in relation to pulmonary function, dosimetric factors, TGFβ1 expression, and quality of life in breast cancer patients receiving postoperative radiotherapy: a prospective 6month followup study[J]. Clin Transl Oncol, 2023, 25(5): 1287-1296.
[56]Kundrt P, Rennau H, Remmele J, et al. Anatomydependent lung doses from 3Dconformal breastcancer radiotherapy[J]. Sci Rep, 2022, 12(1): 10909.
[57]Ma L, Yang Y, Ma J, et al. Correlation between AIbased CT organ features and normal lung dose in adjuvant radiotherapy following breastconserving surgery: a multicenter prospective study[J]. BMC Cancer, 2023, 23(1): 1085.
[58]Giuranno L, Ient J, De Ruysscher D, et al. Radiationinduced lung injury (RILI)[J]. Front Oncol, 2019, 9: 877.
[59]Vujaskovic Z, Feng QF, Rabbani ZN, et al. Assessment of the protective effect of amifostine on radiationinduced pulmonary toxicity[J]. Exp Lung Res, 2002, 28(7): 577-590.
[60]Sasse AD, Clark LG, Sasse EC, et al. Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a metaanalysis[J]. Int J Radiat Oncol Biol Phys, 2006, 64(3): 784-791.
[61]Kma L, Gao F, Fish BL, et al. Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax[J]. J Radiat Res, 2012, 53(1): 10-17.
[62]Bracci S, Valeriani M, Agolli L, et al. Reninangiotensin system inhibitors might help to reduce the development of symptomatic radiation pneumonitis after stereotactic body radiotherapy for lung cancer[J]. Clin Lung Cancer, 2016, 17(3): 189-197.
[63]Alite F, Balasubramanian N, Adams W, et al. Decreased risk of radiation pneumonitis with coincident concurrent use of angiotensinconverting enzyme inhibitors in patients receiving lung stereotactic body radiation therapy[J]. Am J Clin Oncol, 2018, 41(6): 576-580.
[64]Sio TT, Atherton PJ, Pederson LD, et al. Daily lisinopril vs placebo for prevention of chemoradiationinduced pulmonary distress in patients with lung cancer (Alliance MC1221): a pilot doubleblind randomized trial[J]. Int J Radiat Oncol Biol Phys, 2019, 103(3): 686-696.
[65]Sun Y, Du YJ, Zhao H, et al. Protective effects of ulinastatin and methylprednisolone against radiationinduced lung injury in mice[J]. J Radiat Res, 2016, 57(5): 505-511.
[66]Li D, Ji H, Zhao B, et al. Therapeutic effect of ulinastatin on pulmonary fibrosis via downregulation of TGFβ1, TNFα and NFκB[J]. Mol Med Rep, 2018, 17(1): 1717-1723.
[67]Tang F, Li R, Xue J, et al. Azithromycin attenuates acute radiationinduced lung injury in mice[J]. Oncol Lett, 2017, 14(5): 5211-5220.
[68]Azmoonfar R, Amini P, Saffar H, et al. Metformin protects against radiationinduced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression[J]. Adv Pharm Bull, 2018, 8(4): 697-704.
[69]Ying H, Fang M, Hang QQ, et al. Pirfenidone modulates macrophage polarization and ameliorates radiationinduced lung fibrosis by inhibiting the TGFβ1/Smad3 pathway[J]. J Cell Mol Med, 2021, 25(18): 8662-8675.
[70]Chen C, Zeng B, Xue D, et al. Pirfenidone for the prevention of radiationinduced lung injury in patients with locally advanced oesophageal squamous cell carcinoma: a protocol for a randomised controlled trial[J]. BMJ Open, 2022, 12(10): e060619.
[71]Rimner A, Moore ZR, Lobaugh S, et al. Randomized phase 2 placebocontrolled trial of nintedanib for the treatment of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2023, 116(5): 1091-1099.
[72]Yu TK, Whitman GJ, Thames HD, et al. Clinically relevant pneumonitis after sequential paclitaxelbased chemotherapy and radiotherapy in breast cancer patients[J]. J Natl Cancer Inst, 2004, 96(22): 1676-1681.
[73]Bielopolski D, Evron E, MorehRahav O, et al. Paclitaxelinduced pneumonitis in patients with breast cancer: case series and review of the literature[J]. J Chemother, 2017, 29(2): 113-117.
[74]Varga Z, Cserhti A, Kelemen G, et al. Role of systemic therapy in the development of lung sequelae after conformal radiotherapy in breast cancer patients[J]. Int J Radiat Oncol Biol Phys, 2011, 80(4): 1109-1116.
[75]Elkiki SM, Mansour HH, Anis LM, et al. Evaluation of aromatase inhibitor on radiation induced pulmonary fibrosis via TGFβ/Smad3 and TGFβ/PDGF pathways in rats[J]. Toxicol Mech Methods, 2021, 31(7): 538-545.
[76]Altinok AY, Yildirim S, Altug T, et al. Aromatase inhibitors decrease radiationinduced lung fibrosis: Results of an experimental study[J]. Breast, 2016, 28: 174-177.
[77]Konishi T, Fujiogi M, Michihata N, et al. Interstitial lung disorders following postoperative radiotherapy with concurrent or sequential hormonal therapy for breast cancer: a nationwide database study in Japan[J]. Breast Cancer, 2022, 29(4): 688-697.
|