[1]徐东, 朱小霞, 曾学军, 等. 痛风诊疗规范[J]. 中华内科杂志, 2020, 59(6): 421-426.
[2]Singh JA, Gaffo A. Gout epidemiology and comorbidities[J]. Semin Arthritis Rheum, 2020, 50(3S): S11-S16.
[3]赵敏, 陈婷, 黄振光, 等. 1990—2019年中国痛风疾病负担研究[J]. 现代预防医学, 2021, 48(21): 3974-3978.
[4]Keysser G. Gout arthritis: pathogenesis, diagnostics and treatment[J]. Dtsch Med Wochenschr, 2020, 145(14): 991-1005.
[5]VargasSantos AB, Neogi T, da Rocha CastelarPinheiro G, et al. Causespecific mortality in gout: novel findings of elevated risk of noncardiovascularrelated deaths[J]. Arthritis Rheumatol, 2019, 71(11): 1935-1942.
[6]Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535.
[7]Pieterse E, Jeremic I, Czegley C, et al. Bloodborne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals[J]. Sci Rep, 2016, 6: 38229.
[8]Liu L, Wang D, Liu M, et al. The development from hyperuricemia to gout: key mechanisms and natural products for treatment[J]. AHM, 2022, 2(1): 25-32.
[9]Yan F, Zhang H, Yuan X, et al. Comparison of the different monosodium urate crystals in the preparation process and proinflammation[J]. Adv Rheumatol, 2023, 63(1): 39.
[10]Chen C, Wang J, Liang Z, et al. Monosodium urate crystals with controlled shape and aspect ratio for elucidating the pathological progress of acute gout[J]. Biomater Adv, 2022, 139: 213005.
[11]Towiwat P, Chhana A, Dalbeth N. The anatomical pathology of gout: a systematic literature review[J]. BMC Musculoskelet Disord, 2019, 20(1): 140.
[12]Dalbeth N, Stamp L. Hyperuricaemia and gout: time for a new staging system?[J]. Ann Rheum Dis, 2014, 73(9): 1598-1600.
[13]Schett G, Schauer C, Hoffmann M, et al. Why does the gout attack stop? A roadmap for the immune pathogenesis of gout[J]. RMD Open, 2015, 1(Suppl 1): e000046.
[14]Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12myristate 13acetate (PMA) accompanied by changes different from typical apoptosis or necrosis[J]. J Leukoc Biol, 1996, 59(2): 229-240.
[15]Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: Is immunity the second function of chromatin?[J]. J Cell Biol, 2012, 198(5): 773-783.
[16]Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens[J]. Nat Immunol, 2014, 15(11): 1017-1025.
[17]Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death[J]. Sci STKE, 2007, 2007(379): pe11.
[18]Hamam HJ, Palaniyar N. Posttranslational modifications in NETosis and NETsmediated diseases[J]. Biomolecules, 2019, 9(8): 369.
[19]Yipp BG, Kubes P. NETosis: how vital is it?[J]. Blood, 2013, 122(16): 2784-2794.
[20]Klopf J, Brostjan C, Eilenberg W, et al. Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease[J]. Int J Mol Sci, 2021, 22(2): 559.
[21]Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process[J]. J Immunol, 2013, 191(5): 2647-2656.
[22]Yaykasli KO, Schauer C, Munoz LE, et al. Neutrophil extracellular trapdriven occlusive diseases[J]. Cells, 2021, 10(9): 2208.
[23]Daniel C, Leppkes M, Munoz LE, et al. Extracellular DNA traps in inflammation, injury and healing[J]. Nat Rev Nephrol, 2019, 15(9): 559-575.
[24]Muoz LE, Bilyy R, Biermann MH, et al. Nanoparticles sizedependently initiate selflimiting NETosisdriven inflammation[J]. Proc Natl Acad Sci U S A, 2016, 113(40): E5856-E5865.
[25]Schauer C, Janko C, Munoz LE, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines[J]. Nat Med, 2014, 20(5): 511-517.
[26]Chatfield SM, Grebe K, Whitehead LW, et al. Monosodium urate crystals generate nucleaseresistant neutrophil extracellular traps via a distinct molecular pathway[J]. J Immunol, 2018, 200(5): 1802-1816.
[27]Chen X, Li W, Ren J, et al. Translocation of mixed lineage kinase domainlike protein to plasma membrane leads to necrotic cell death[J]. Cell Res, 2014, 24(1): 105-121.
[28]Desai J, Kumar SV, Mulay SR, et al. PMA and crystalinduced neutrophil extracellular trap formation involves RIPK1RIPK3MLKL signaling[J]. Eur J Immunol, 2016, 46(1): 223-229.
[29]Remijsen Q, Vanden Berghe T, Wirawan E, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation[J]. Cell Res, 2011, 21(2): 290-304.
[30]Mitroulis I, Kambas K, Chrysanthopoulou A, et al. Neutrophil extracellular trap formation is associated with IL1β and autophagyrelated signaling in gout[J]. PLoS One, 2011, 6(12): e29318.
[31]Tan H, Li Z, Zhang S, et al. Novel perception of neutrophil extracellular traps in gouty inflammation[J]. Int Immunopharmacol, 2023, 115: 109642.
[32]Liu C, Zhou M, Jiang W, et al. GPR105targeted therapy promotes gout resolution as a switch between NETosis and apoptosis of neutrophils[J]. Front Immunol, 2022, 13: 870183.
[33]Sil P, Hayes CP, Reaves BJ, et al. P2Y6 receptor antagonist MRS2578 inhibits neutrophil activation and aggregated neutrophil extracellular trap formation induced by goutassociated monosodium urate crystals[J]. J Immunol, 2017, 198(1): 428-442.
[34]Schoen J, Euler M, Schauer C, et al. Neutrophils′ extracellular trap mechanisms: From physiology to pathology[J]. Int J Mol Sci, 2022, 23(21): 12855.
[35]Taylor WJ, Fransen J, Jansen TL, et al. Study for updated gout classification criteria: identification of features to classify gout[J]. Arthritis Care Res (Hoboken), 2015, 67(9): 1304-1315.
[36]Chen YH, Hsieh SC, Chen WY, et al. Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the antiinflammatory factors TGFβ1, IL10 and soluble TNF receptors and the intracellular cytokine negative regulators CIS and SOCS3[J]. Ann Rheum Dis, 2011, 70(9): 1655-1663.
[37]So AK, Martinon F. Inflammation in gout: mechanisms and therapeutic targets[J]. Nat Rev Rheumatol, 2017, 13(11): 639-647.
[38]Schorn C, Frey B, Lauber K, et al. Sodium overload and water influx activate the NALP3 inflammasome[J]. J Biol Chem, 2011, 286(1): 35-41.
[39]Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328.
[40]Chen CJ, Shi Y, Hearn A, et al. MyD88dependent IL1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals[J]. J Clin Invest, 2006, 116(8): 2262-2271.
[41]Dalbeth N, Pool B, Gamble GD, et al. Cellular characterization of the gouty tophus: a quantitative analysis[J]. Arthritis Rheum, 2010, 62(5): 1549-1556.
[42]GarciaGonzalez E, Gamberucci A, Lucherini OM, et al. Neutrophil extracellular traps release in gout and pseudogout depends on the number of crystals regardless of leukocyte count[J]. Rheumatology (Oxford), 2021, 60(10): 4920-4928.
[43]Desai J, Steiger S, Anders HJ. Molecular pathophysiology of gout[J]. Trends Mol Med, 2017, 23(8): 756-768.
[44]Dalbeth N, Aati O, Kalluru R, et al. Relationship between structural joint damage and urate deposition in gout: a plain radiography and dualenergy CT study[J]. Ann Rheum Dis, 2015, 74(6): 1030-1036.
[45]Schlesinger N, Thiele RG. The pathogenesis of bone erosions in gouty arthritis[J]. Ann Rheum Dis, 2010, 69(11): 1907-1912.
[46]Jia E, Li Z, Geng H, et al. Neutrophil extracellular traps induce the bone erosion of gout[J]. BMC Musculoskelet Disord, 2022, 23(1): 1128.
[47]周梦, 陈志涵, 郑炜平, 等. 高尿酸血症促进大鼠海马组织中β淀粉样蛋白沉积的机制研究[J]. 江苏大学学报(医学版), 2023, 33(2): 141-145.
[48]孙宇焱. 高尿酸血症在2型糖尿病血管并发症中的作用[J]. 江苏大学学报(医学版), 2007, 17(2): 178-179.
[49]Bonaventura A, Vecchié A, Abbate A, et al. Neutrophil extracellular traps and cardiovascular diseases: an update[J]. Cells, 2020, 9(1): 231.
[50]Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential antiNETs therapeutics[J]. Clin Rev Allergy Immunol, 2021, 61(2): 194-211.
[51]Liu L, Shan L, Wang H, et al. Neutrophil extracellular trapborne elastase prevents inflammatory relapse in intercritical gout[J]. Arthritis Rheumatol, 2023, 75(6): 1039-1047.
[52]Vedder D, Gerritsen M, Duvvuri B, et al. Neutrophil activation identifies patients with active polyarticular gout[J]. Arthritis Res Ther, 2020, 22(1): 148.
[53]Euler M, Hoffmann MH. The doubleedged role of neutrophil extracellular traps in inflammation[J]. Biochem Soc Trans, 2019, 47(6): 1921-1930.
[54]Ngo ATP, Gollomp K. Building a better NET: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders[J]. Res Pract Thromb Haemost, 2022, 6(7): e12808.
[55]Martin Monreal MT, Rebak AS, Massarenti L, et al. Applicability of smallmolecule inhibitors in the study of peptidyl arginine deiminase 2 (PAD2) and PAD4[J]. Front Immunol, 2021, 12: 716250.
[56]Schorn C, Janko C, Latzko M, et al. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells[J]. Front Immunol, 2012, 3: 277.
|