Vol. 24 No. 6 Dec. 2006

喷灌用镁合金管道成形工艺

李金山,黄修桥

(水利部、中国农科院农田灌溉研究所,河南新乡453003)

摘 要:研究了镁合金挤压模具及工艺参数.根据镁合金特点设计了4孔分流挤压模具,选择 MB2 镁合金在1250 T 卧式挤压机上进行了挤压试验.通过试验得到的主要工艺参数为.镁棒预热温度为548~698 K 模具预热温度530~673 K,挤压筒温度573~723 K,挤压速度0.067~0.083 m/s及挤压比40~60.与铝合金管相比3种规格的镁合金管具有良好的力学性能和机械性能,可完全满足喷灌工程的需要.

关键词:管道;镁合金;挤压;模具;工艺参数;喷灌

中图分类号:TG37;S277 文献标识码:A 文章编号:1005-6254(2006)06-0028-03

Shape craft study on magnesium alloy sprinkler pipe

LI Jin-shan , HUANG Xiu-qiao

(Farmland Irrigation Research Institute, MWC, CAAS, Xinxiang, Henan 453003, China)

Abstract: Magnesium alloy extrusion mold and the craft parameter were studied. According to magnesium alloy characteristic , the 4 holes extrusion mold was designed. Extrusion experiment was carried out with the MB2 on 1 250 ton extruder. The magnesium stick temperature is at $548 \sim 698~K$, mold temperature at $530 \sim 673~K$, extrusion tube temperature at $573 \sim 723~K$, extrusion speed at $0.067 \sim 0.083~m/s$, and extrusion ratio at $40 \sim 60$. Compared to aluminum alloy pipes , magnesium metal alloy pipes have good mechanics function and machine function , and satisfiys the sprinkler engineering.

Key words: pipe; magnesium alloy; extrusion; mold; craft parameter; sprinkler

喷灌是一种先进的节水灌溉方式 是我国目前和今后一段时间推广应用的主要节水灌溉方式之一[1],喷灌设备生产企业普遍缺乏产业化能力[2],急需创新. 半固定喷灌是可广泛应用于大田作物的节水灌溉技术 其中管道式喷灌一直是我国喷灌设备的主流. 地面移动管材从最初的薄壁钢管到后来的薄壁铝管和 PE 管等 其中薄壁钢管由于加工缺陷、易腐蚀,已很少被使用,薄壁铝管尽管重量轻、耐用,是目前广泛使用的喷灌移动管道,但其生产成本偏高. 而通过减小壁厚降低成本的方法会严重减弱产品的刚度,造成质量下降. 镁合金是目前国内外重新认识并积极开发的一种新型环保材料 重量轻 是铝的2/3 比强度、比

钢度和可塑性优于铝合金. 作者主要针对镁合金的特性 对管道成形中的各种参数进行了分析和试验 ,研制出三种规格的镁合金喷灌管道.

1 材料与设备

1.1 材料选择

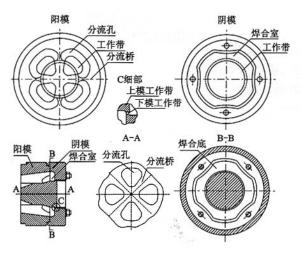
研究发现,不同化学元素对镁合金材料防腐性能的影响差别较大. 对腐蚀速度影响不大的元素有 Al ,Mn ,Na ,Si 和 Zr ;对腐蚀速度影响稍大的元素有 Zn ,Cd ,Ca 和 Ag ,对腐蚀速度影响较大的元素有 Ni , Fe .Cu 和 $Co^{[3,4]}$.

收稿日期:2006-09-18

基金项目:国家"863"计划项目(2002AA2Z41503)

作者简介: 李夤城 1972 -) 男 河南通许人 助理研究员 主要从事节水灌溉理论和设备的研究. 黄修桥 1961 -) 男 湖北汉川人 研究员 博导 主要从事节水灌溉理论与技术的研究. MB2 合金属于镁 - 铝 - 锌 - 锰系合金 ,合金中的 Al 能与 Mg 形成固溶体而提高合金的力学性能^[12]. 此外 ,Al 能提高合金耐腐蚀性 ,减少凝固时的收缩. MB2 合金具有优异的力学性能和良好的抗蚀性能 ,合金中的重金属 Ni ,Fe ,Cu 含量较低 ,抗海水腐蚀能力非常好. 在熔化工艺过程中 采用气体保护 ,减少溶剂用量 ,把合金中氯离子含量控制在10⁻⁵以下 ,从控制溶剂的含量来提高合金防腐能力. MB2 化学成分见表 1.

表 1 喷灌镁合金管的化学成分


元素	Al	Mn	Zn	Ве	Si	Cu	Fe	Ni	Mg
占比/	3.0 ~ 4.0	0.15 ~ 0.5	0.2 ~ 0.8	0.01	0.10	0.05	0.05	0.005	余量

1.2 设备

1 250 T 卧式挤压机、镁棒加热炉、模具预加热炉、拉扭矫直机及定尺锯等.

2 挤压模具设计

挤压是指对放在挤压筒中的镁棒的一端施加压力,使之通过模孔以实现塑性变形的一种压力加工方法. 挤压工艺能够使金属具有更为强烈的三向压应力状态,可有效细化镁合金的晶粒组织, 提高合金的强度和塑性;此外,挤压工艺具有较大的灵活性,操作方便,产品的尺寸精度高,表面质量好[5-7]. 镁合金挤压模具(图1)和铝合金挤压模具的结构基本相同,空心断面采用4孔分流,挤压筒直径为115~130 mm,分流桥进口处尺寸增大到14~17 mm,焊合室的形状为梅花型,轴向深度为13~17 mm. 镁合金材料在分流孔中分离,在焊合室中焊合.

万方数据 1 模具设计示意图

3 镁合金挤压参数

挤压工艺合理与否直接影响到该产品的机械性能和外观质量. 在挤压过程中 影响镁合金挤压制品的因素众多 ,主要包括镁棒预加热温度、挤压速度、挤压筒温度、模具预热温度、挤压比等.

3.1 挤压筒温度

大量文献资料和试验表明,挤压筒温度对管材的质量有较大影响,温度过高将使镁棒在挤压过程中温度升高,造成管材表面烧损^{8,9,1};温度过低将增大挤压力,在其他参数一定的情况下,增加能耗,生产率降低,甚至出现"死机"想象.

3.2 镁棒预加热温度

温度过高将使挤压管材表面出现烧损、横裂纹等现象^[5]. 降低胚料的预热温度能减少裂纹,但温度过低又使生产效率大大降低,还可能出现挤压力不够而挤不动.

3.3 挤压速度

镁合金本身的变形能力决定了挤压速度的大小 挤压速度较快可引起管材表面温度升高过快 ,导致出现烧损、壁厚偏差较大以及管材直度不匀和扭曲等现象. 挤压速度较慢 ,一方面会使预热模具温度降低 ,出现挤不动现象 ;另外使生产率降低 ,增加生产成本.

3.4 模具预热温度

模具温度过低将使胚料温度下降过快,导致无法分流,出现挤不动现象^[89];模具预热温度过高会导致镁棒快速升温,镁合金管材表面烧损、横裂纹和黑褐色.在出现挤不动时,一种办法是用铝合金料将剩余的镁合金挤出来;另外的办法是将模具和胚料加热,再继续挤压.

3.5 挤压比选择

小挤压比使挤压速度过快,导致材料在焊合室不能有效融合,使管材表面出现烧损和横裂纹;大挤压比将增大挤压机负荷,有可能挤不动.对于分流模来说,挤压比 λ 一般取 40 ~ 80 之间. 具体公式如下[10]:

$$\lambda = \pi \phi^2 / nF$$

式中 λ 为挤压比 μ 为模孔数 μ 为截面积 μ 为挤压简直径

为了获得良好的镁合金管道 结合设备情况 对工艺参数进行了综合考虑和多种组合试验 ,确定最佳参数组合如表 2 所示.

表 2 镁合金挤压管道主要参数表

镁棒预热	模具预热	挤压筒	挤压速度/	挤压比
温度/K	温度/K	温度/K	(m/min)	
548 ~698	530 ~673	573 ~723	4 ~ 5	40 ~ 60

镁合金分流挤压管材的硬度、强度和刚度较高, 因此挤压的镁合金管不能像铝合金管一样采用冷拉伸的方法矫直,必须配置加热装置在热状态下进行矫直.

4 结果分析

在 1250 T 卧式挤压机上进行了不同挤压比试验 結果见表 3. 经过多次试验 ,发现 3 种规格的镁合金喷灌管挤压比在 $40 \sim 60$ 之间管材表面质量、直度及壁厚均度较理想 ;挤压筒温度应比镁棒预热温度和模具温度高 25% 和 43% 为宜 ;挤压速度在 $4\sim5$ m/min 时既可保证质量又能提高效率.

表 3 挤压比与管材质量的关系

		管材尺寸	挤压	 镁管		
直径/mm	直径/mm	直径×壁厚/mm×mm	比	状况		
115	110	50 × 1.4	49	良好		
130	110	50×1.4	62	一般		
140	110	50×1.4	72	挤不动		
115	110	65×1.4	37	裂纹		
130	110	65×1.4	47	良好		
115	110	76×1.4	32	裂纹		
130	110	76×1.4	41	良好		

对三种规格的镁合金管材进行了物理力学性能测试 結果表明 在施加 6.0 MPa 压力时 ,三种规格的镁合金管道均无损坏和渗漏. 试验结果表明 .镁合金管道的屈服强度、抗拉强度和延伸率(表 4)等均优于同规格的铝合金管道或与同规格的铝合金管道相当 ,可满足喷灌对管道的要求.

表 4 镁合金管道物理力学性能

规格¹		爆破	压扁	屈服强度/	抗拉强度/	延伸率/
		试验2	试验3	MPa	MPa	%
A50	镁合金	合格	合格	260	400	9.4
Φ50	铝合金	合格	合格	240	290	9.0
	镁合金	合格	合格	240	370	9.6
Φ65	铝合金	合格	合格	245	290	8.9
Ф76	镁合金	合格	合格	250	390	9.4
	铝合金	合格	合格	240	290	9.3

注 1. 管壁厚度均为 1.4 mm 2. 爆破试验施加压力为 6.0 MPa;

5 结 论

(1)MB2 金具有良好力学性能和抗腐蚀性能, 在铝合金模具的基础上设计了镁合金管道挤压专用 模具.

(2)分流挤压镁合金的主要参数:镁棒预热温度 548~698 K 模具预热温度 530~673 K 挤压筒温度 573~723 K 挤压速度 4~5 m/min ,挤压比 40~60.

(3)3种规格的镁合金管道在屈服强度、抗拉强度和延伸率等力学性能方面满足喷灌要求.

参考文献(References)

- [1] 兰才有, 仪修堂, 薜桂宁. 我国喷灌设备的研发现状及 发展方向[J]. 排灌机械, 2005, 23(1):1-6.
- [2] 李英能. 浅论我国喷灌设备技术创新[J]. 排灌机械, 2001,19(2)3-7.
- [3] 边风刚 李国禄 刘金海 ,等. 镁合金表面处理的发展 现状 J]. 材料保护 2002 35(3):1-4.
- [4] 周婉秋 单大勇 ,曾荣昌 ,等. 镁合金的腐蚀行为与表面防护方法 J]. 材料保护 2002 35(7):1-3.
- [5] 陈振华. 变形镁合金[M]. 北京:化学工业出版社, 2005.
- [6] 肖泽辉 罗吉荣 吴树森 ,等. 镁合金挤压铸造工艺及模具的设计[J]. 特种铸造及有色合金 2003(6)39-40.
- [7] 张青来 李 强 卢 晨 等. AZ31B 变形镁合金压力 成形 J]. 轻合金加工技术 2004 32(1) 30 34.
- [8] 张青来 卢 晨 ,丁文江. 分流挤压镁合金管材工艺研 究 J]. 轻合金加工技术 2003 31(10) 28 30.
- [10] 李积彬,伍晓宇,毛大恒,等.铝型材挤压模具3D设计CAD/CAE实用技术M].北京:治金工业出版社, 2003.

(责任编辑 张文涛)

^{3.} 压扁试验的压扁高度为管道直径的 1/2.