排灌机械工程学报
   Home  About Journal  Editorial Board  Author Center  Subscriptions    中文 
Journal of Drainage and Irrigation Machinery Engin  2019, Vol. 37 Issue (6): 545-552    DOI: 10.3969/j.issn.1674-8530.18.0215
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Evaluation on applicability of global solar radiation calculation model in Northwest China
ZHANG Yixuan1, CUI Ningbo1,2*, FENG Yu1,3, YUE Jinhua4, WANG Jun4, LIU Shuangmei5
1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; 2. Provincial Key Laboratory of Water-Saving Agriculture in Hill Area of Southern China, Chengdu, Sichuan 610066, China; 3. State Engineering Laboratory for Efficient Water Use and Disaster Loss Reduction of Crops, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing 100081, China; 4. Beijing Zhongnong Xingwang Planning and Design Consultion Co.Ltd., Beijing 100102, China; 5. Sichuan Institute of Water Resources Science, Chengdu, Sichuan 610065, China
 Download: PDF (3581 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract To effectively improve the prediction accuracy of Rs in Northwest China, the daily climate data collected from 11 representive meteorological stations during 1959—2015 were used to estimate Rs. Four kinds of sunshine-based models(Angstrom-Prescott, Ogelman, Bahel and Louche model)and two kinds of temperature-based models(Hargreaves and Bristow-Campbell model)were evaluated in four sub-zones: the temperate continental high temperature-arid zone, the temperate continental arid zone, the plateau continental semiarid zone and the temperate monsoon semiarid zone. The results show that the estimate Rs results of each model has a significant correlation with the measured value at the 0.001 level. Generally, the applicability of sunshine-based model(with R2 ranging from 0.901 to 0.903)is better than that of temperature-based model(with R2 ranging from 0.695 to 0.719). Among the 4 sunshine-based models, Bahel model shows the best performance, with R2 of 0.903, MAE of 1.624 MJ/(m2·d), MRE of 15.7%, RMSE of 2.298 MJ/(m2·d)and NSE of 0.902. The most accurate temperature-based model is Bristow-Campbell model, with R2 of 0.719, MAE of 2.851 MJ/(m2·d), MRE of 30.7%, RMSE of 3.959 MJ/(m2·d)and NSE of 0.713. Overall, the Bahel model is recommended to estimate daily and monthly Rs when only the sunshine duration data are avai-lable in Northwest China and the Bristow-Campbell model is recommended to estimate Rs when only temperature data are available.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Yi-Xuan-
CUI Ning-Bo-
*
FENG Yu-
LE Jin-Hua-
WANG Jun-
LIU Shuang-Mei-
Key wordsNorthwest China   global solar radiation   calculation models   performance evaluation     
Received: 2018-10-16;
Cite this article:   
ZHANG Yi-Xuan-,CUI Ning-Bo-,* et al. Evaluation on applicability of global solar radiation calculation model in Northwest China[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(6): 545-552.
 
[1] TEKE A, YILDIRIM H B, CELIK O. Evaluation and performance comparison of different model for the estimation of solar radiation[J]. Renewable and sustaina-ble energy reviews, 2015, 50: 1097-1107.
[2] BESHARAT F, DEHGHAN A A, FAGHIH A R. Empirical models for estimating global solar radiation: a review and case study[J]. Renewable and sustainable energy reviews, 2013, 21(21): 798-821.
[3] ZHANG H, XIN X, LI L, et al. Estimating global solar radiation using a hybrid parametric model from MODIS data over the Tibetan Plateau[J]. Solar energy, 2015, 112: 373-382.
[4] 闫明, 刘鹏举, 蒋育昊, 等. 基于DEM与太阳辐射的北京市山地坡向提取方法研究[J]. 北京林业大学学报, 2018, 40(1): 67-73.
YAN Ming, LIU Pengju, JIANG Yuhao, et al. Extra-ction method of slope aspect based on DEM and solar radiation in mountain area of Beijing[J]. Journal of Beijing Forestry University, 2018, 40(1): 67-73.(in Chinese)
[5] GAIRAA K, KHELLAF A, MESSLEM Y, CHELLALI F. Estimation of the daily global solar radiation based on Box-Jenkins and Ann models: a combined approach[J]. Renewable and sustainable energy reviews, 2016,57:238-249.
[6] 张皓杰,崔宁博,徐颖,等. 基于ELM的西北旱区参考作物蒸散量预报模型[J]. 排灌机械工程学报, 2018, 36(8): 779-784. 浏览
ZHANG Haojie,CUI Ningbo,XU Ying, et al. Prediction for reference crop evapotranspiration in arid northwest China based on ELM[J]. Journal of drainage and irrigation machinery engineering, 2018, 36(8): 779-784.(in Chinese)
[7] OGELMAN H, ECEVIT A, TASDEMIROGLU E. A new method for estimating solar radiation from bright sun-shine data[J]. Solar energy, 1984, 33(6): 619-625.
[8] BAHEL V, BAKHSH H, SRINIVASAN R. A correla-tion for estimation of global solar radiation[J]. Energy, 1987, 12(2): 131-135.
[9] CITAKOGLU H. Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation[J]. Computers and electronics in agriculture, 2015, 118: 28-37.
[10] MUHAMMED A H, KHALIL A, KASEB S, et al. Potential of four different machine-learning algorithms in modeling daily global solar radiation[J]. Renewable energy, 2017, 111:52-62.
[11] CHEN R S, KANG E, YANG J P, et al. Validation of five global radiation models with measured daily data in China[J]. Energy conversion and management, 2004, 45(11/12): 1759-1769.
[12] LIU Y F, ZHOU Y, WANG D J, et al. Classification of solar radiation zones and general models for estimating the daily global solar radiation on horizontal surfaces in china[J]. Energy conversion and management, 2017, 154:168-179.
[13] JAHANI B, DINPASHOH Y, NAFCHI A R. Evaluation and development of empirical models for estimating daily solar radiation[J]. Renewable and sustainable energy reviews, 2017, 73: 878-891.
[14] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[M]. Rome:Food and Agriculture Organization of the United Nations, 1998.
[1] HUANG Biao,WU Qin,,WANG Guoyu. Progress and prospects of investigation into unsteady cavitating flows[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(1): 1-14.
[2] CHU Shanpeng, ZHANG Jian, YU Xiaodong. Influence of tee minor hydraulic loss model on draft tube inlet pressure and upsurge in surge chamber[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(1): 42-49.

Copyright © 2011 Journal of Drainage and Irrigation Machinery Engineering
Support by Beijing Magtech Co.Ltd   E-mail: support@magtech.com.cn