排灌机械工程学报
   Home  About Journal  Editorial Board  Author Center  Subscriptions    中文 
Journal of Drainage and Irrigation Machinery Engin  2019, Vol. 37 Issue (3): 185-191    DOI: 10.3969/j.issn.1674-8530.17.0078
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Effects of blade outlet angle on performance of chemical centrifugal pump
YUAN Shouqi, HUANG Xi*, ZHANG Jinfeng, ZHANG Xia
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 Download: PDF (5882 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In order to investigate the influence of blade outlet angle on the performance of a chemical centrifugal pump, a chemical centrifugal pump with the specific speed of 180 was taken as a model, three different blade outlet angles, such as 27°, 37°, and 47°, were designed except the original impeller with 22°blade outlet angle. Then, the software ANSYS 14.5 was applied to carry out numerical calculations. The results show that blade outlet angle can affect the performance significantly, an appropriately increased blade outlet angle can improve the head and efficiency of the pump, but it shouldn′t exceed 47°. With increasing blade outlet angle, the low energy fluid area gradually expands from the blade leading edge to the trailing edge, and the pressure distribution tends to be disordered, but also an adverse pressure gradient exists near the blade pressure side, and the unsteady fluid with low energy gathers there. Under design condition, when the blade outlet angle is less than 37°, the amplitude of pressure fluctuation is lower, and the amplitude of high frequency fluctuation is very small. The secondary frequency tends to shift to a lower frequency with increasing blade outlet angle. The impeller radial thrust in each design is the smallest under the design condition, and the difference is the largest under part-load condition. The impeller radial thrust force is the minimum at 27° blade outlet angle compared with the other impellers under the same flow rate. It is suggested that there is an optimal blade outlet angle for unsteady flows. Meanwhile, a performance experiment was conducted on the pump with 22° blade outlet angle, and it was found that the results of numerical simulation were reliable. Generally, this study has certain referential significance to development of chemical centrifugal pumps.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YUAN Shou-Qi
HUANG Qian-*
ZHANG Jin-Feng
ZHANG Xia
Key wordschemical centrifugal pump   blade outlet angle   numerical simulation   pressure fluctuation   radial force   unsteady flow     
Received: 2017-04-14;
Cite this article:   
YUAN Shou-Qi,HUANG Qian-*,ZHANG Jin-Feng et al. Effects of blade outlet angle on performance of chemical centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(3): 185-191.
 
[1] 黄列群, 武鹏, 薛存球, 等. 离心式化工流程泵设计技术进展综述[J]. 机电工程, 2009(6):1-4.
[2] HUANG Liequn, WU Peng, XUE Cunqiu, et al. Review of progress on the design technology of centrifugal type chemical process pump[J]. Journal of mechanical & electrical engineering, 2009(6):1-4.(in Chinese)
[3] WANG W, PEI J, YUAN S, et al. Application of different surrogate models on the optimization of centrifugal pump[J]. Journal of mechanical science and technology, 2016,30(2):567-574.
[4] GÜLICH J F. Centrifugal Pumps[M]. Heidelberg, Berlin: Springer, 2010.
[5] 郑路路, 窦华书, 蒋威, 等. 基于能量梯度方法的叶片数对离心泵稳定性影响研究[J]. 浙江理工大学学报(自然科学版), 2016,35(1):71-77.
ZHENG Lulu, DOU Huashu, JIANG Wei, et al. Effects of number of blades on stability of centrifugal pump based on energy gradient method[J]. Journal of Zhejiang Sci-Tech University(natural sciences), 2016, 35(1):71-77.(in Chinese)
[6] 张金凤, 袁寿其, 付跃登, 等. 分流叶片对离心泵流场和性能影响的数值预报[J]. 机械工程学报, 2009,45(7):131-137.
ZHANG Jinfeng, YUAN Shouqi, FU Yuedeng, et al. Numerical forecast of the influence of splitter blades on the flow field and characteristics of a centrifugal pump[J]. Journal of mechanical engineering, 2009,45(7):131-137.(in Chinese)
[7] PEI J, YUAN S, BENRA F K, et al. Numerical prediction of unsteady pressure field within the whole flow passage of a radial single-blade pump[J]. Journal of fluids engineering, 2012,134(10):101103.
[8] BACHAROUDIS E C, FILIOS A E, MENTZOS M D, et al. Parametric study of a centrifugal pump impeller by varying the outlet blade angle[J]. Open mechanical engineering journal, 2008,2(1):75-83.
[9] 查森. 叶片泵原理及水力设计[M]. 北京:机械工业出版社, 1988.
[10] 沈阳水泵研究所. 叶片泵设计手册[M]. 北京:机械工业出版社, 1983.
[11] 关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社, 2011.
[12] VESELOV V I. Effect of the outlet angle β2 on the cha-racteristics of low specific-speed centrifugal pumps[J]. Power technology and engineering, 1982,16(5):267-273.
[13] LI W, SHI W D, JIANG T, et al. Analysis on effects of the blade wrap angle and outlet angle on the performance of the low-specific speed centrifugal pump[J]. Advanced materials research, 2011(354/355):615-620.
[14] GONZÁLEZ J, SANTOLARIA C. Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of fluids engineering, 2006,128(5):937-946.
[1] LI Wei*, ZHANG Yang, SUN Bing , SHI Weidong, XU Rongjun. Rotor radial force and pressure fluctuation of the mixed flow pump under different flow conditions[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(4): 277-283.
[2] YU Haoqian*,WANG Yang,HAN Yawen,HU Rixin,TANG Haitao,WANG Qun. Flow-induced noise and noise reduction of self-priming vortex pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(4): 302-306.
[3] LIU Kun,XU Lei*,YANG Bo,LIU Yun. Numerical simulation of high-pressure pump with CFD[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(4): 307-312.
[4] MENG Kaixuan*, PAN Zhongyong, WANG Xuebao. Analysis of pressure fluctuation of water jet propellerunder different ship speeds[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(3): 224-231.
[5] GUO Guangqiang, ZHANG Renhui, ZHAO Wanyong, YANG Junhu, HUANG Qi. Numerical simulation on transient characteristics during startup period of the snorkeling fire pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(2): 118-123.
[6] SHI Haixia, YANG Yafei, LI Yue, XU Wei. Pressure fluctuation in multistage volute pump when first stage impeller trimmed[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(1): 7-12.
[7] SHI Guangtai, WANG Zhiwen. Pressurization performance of different areas within multiphase pump impeller[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(1): 13-17.
[8] LI Qifei,*, WANG Yuankai, LIU Chao, ZHANG Jianxun, ZHANG Zhengjie, WANG Renben. Pressure fluctuation characteristics of Francis pump turbine in the hump zone[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(6): 461-466.
[9] HE Jie, LIU Xiumei*, LI Beibei,, XU Huawen. Effects of groove depths on cavitation flow field in a U-shaped throttle valve[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(6): 517-523.
[10] CHEN Jie, WANG Yong, LIU Houlin, SHAO Chang, ZHANG Xiang*. Internal flow and analysis of its unsteady characteristics in centrifugal pump with ultra-low specific-speed[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(5): 377-383.
[11] GAO Bo*, YANG Li, ZHANG Ning, DU Wenqiang, YUAN Xiao. Effects of tongue tip radius on performance and hydrodynamic load characteristics in centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(3): 185-190.
[12] GAO Bo*, YANG Li, ZHANG Ning, DU Wenqiang, YUAN Xiao. Effects of tongue tip radius on performance and hydrodynamic load characteristics in centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(3): 185-190.
[13] HAN Wei,, LI Xuefeng,*, SU Min, LI Rennian,, CHEN Hao,. Pressure fluctuation of solid-liquid flow in stator and rotor cascades of pump as turbine[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(2): 99-103.
[14] HE Naichang, TAN Minggao*, LIU Houlin, HUANG Xin, WU Xianfang. Test and analysis on pressure pulsation and hydraulic performance of saddle zone in axial flow pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(2): 118-123.
[15] SU Shaohua,, LIU Zhuqing,*. Hydraulic performance of guide vane mixed-flow pump based on loading distribution[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(12): 1233-1239.

Copyright © 2011 Journal of Drainage and Irrigation Machinery Engineering
Support by Beijing Magtech Co.Ltd   E-mail: support@magtech.com.cn