排灌机械工程学报
   Home  About Journal  Editorial Board  Author Center  Subscriptions    中文 
Journal of Drainage and Irrigation Machinery Engin  2017, Vol. 35 Issue (2): 126-132    DOI: 10.3969/j.issn.1674-8530.15.0278
Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Modal analysis of axial-flow pump rotor system in water
CHEN Yujie1, ZHENG Yuan2, KAN Kan1, ZHANG Haisheng3, XU Jianye3, CHEN Peng1, CHEN Rongjie4
1.College of Water Conservancy and Hydropower, Hohai University, Nanjing, Jiangsu 210098, China; 2.National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, Jiangsu 210098, China; 3.Tongyu River Management Division in Yancheng, Yancheng, Jiangsu 224511, China; 4.College of Energy and Electric Engineering, Hohai University, Nanjing, Jiangsu 211100, China
 Download: PDF (1545 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Studying the modal of axial-flow pump rotor system in water and the impact of water on modal is important to ensure the efficiency, stable running of the pump and to avoid resonance. By secondly developing the ANSYS Workbench based on fluid-solid coupling theory, we compiled APDL language to couple the fluid and solid calculation equation so as to calculate the modal of axial-flow pump rotor system in air and water. The results show that when the three-dimensional modeling of structure domain was carried out before modal analysis, the hollow portion of structure cannot be simplified to solid area, which is different from flow field analysis. The existence of water makes each order natural frequency of rotor system declined. The depreciation coefficient ranges from 7.95% to 13.29% and each order depreciation coefficient does not show an obvious rule. The blade passing frequency of axial-flow pump is 15 Hz and the guide passing frequency of axial-flow pump is 25 Hz, which are much less than each order natural frequency of axial-flow pump rotor system in water, so it is less likely to generate resonance during running time.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
CHEN Yu-Jie-
ZHENG Yuan-
HAN Han-
ZHANG Hai-Sheng-
XU Jian-Ye-
Chen-Peng-
CHEN Rong-Jie-
Key wordsaxial-flow pump   rotor system   modal analysis   fluid-solid coupling   resonance natural frequency   resonance     
Received: 2015-12-17;
Cite this article:   
CHEN Yu-Jie-,ZHENG Yuan-,HAN Han- et al. Modal analysis of axial-flow pump rotor system in water[J]. Journal of Drainage and Irrigation Machinery Engin, 2017, 35(2): 126-132.
 
[1] 郑源,刘君,周大庆,等.大型轴流泵装置模型试验的压力脉动[J].排灌机械工程报,2010,28(1):51-55.
ZHENG Yuan, LIU Jun, ZHOU Daqing, et al. Pressure pulsation of model test in large-size axial-flow pump[J]. Journal of drainage and irrigation machinery engineering, 2010, 28(1): 51-55.(in Chinese)
[2] ZHANG Desheng, SHI Weidong, VAN ESCH B P M, et al. Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump[J]. Computers & fluids, 2015, 112(2):61-71.
[3] 张德胜, 施卫东, 张华,等. 不同湍流模型在轴流泵性能预测中的应用[J]. 农业工程学报, 2012,28(1):66-71.
ZHANG Desheng, SHI Weidong, ZHANG Hua, et al. Application of different turbulence models for predicting performance of axial-flow pump[J]. Transactions of the CSAE, 2012, 28(1):66-71.(in Chinese)
[4] 张立翔, 陈香林, 闫华. 混流式水轮机转轮叶片流固耦合振动特性分析[J]. 水电能源科学, 2005, 23(2):38-41.
ZHANG Lixiang, CHEN Xiangling, YAN Hua. Dynamic characteristic analysis of fransis hydro turbine blades with fluid-structure interaction[J]. Water resources and power, 2005,23(2):38-41.(in Chinese)
[5] 肖若富, 王正伟, 罗永要. 涡带工况下混流式水轮机转轮动应力特性分析[J]. 水力发电学报, 2007, 26(4):130-134.
XIAO Ruofu, WANG Zhengwei, LUO Yongyao. Dynamic stress analysis of francis turbine with partial load[J]. Journal of hydroelectric engineering, 2007, 26(4):130-134.(in Chinese)
[6] 郑小波, 罗兴琦, 邬海军. 轴流式叶片的流固耦合振动特性分析[J]. 西安理工大学学报, 2005, 21(4):342-346.
ZHENG Xiaobo, LUO Xingqi, WU Haijun. Analysis of fluid-solid coupling dynamic characteristics for the axial flow blades[J]. Journal of Xi′an University of Technology, 2005,21(4):342-346.(in Chinese)
[7] 肖若富, 韦彩新, 韩凤琴,等. 混流式水轮机转轮的动力学研究[J]. 大电机技术, 2001(7):41-43.
[8] XIAO Ruofu, WEI Caixin, HAN Fengqin, et al. Study on dynamic analysis of francis turbine runner[J]. Large electric machine and hydraulic turbine, 2001(7):41-43.(in Chinese)
[9] 刘小兵, 刘德民, 曾永忠,等. 基于流固耦合的水轮机振动的数值研究[J]. 水动力学研究与进展, 2008, 23(6):715-721.
LIU Xiaobin, LIU Demin, ZENG Yongzhong, et al. Numerical simulation of vibration of hydraulic turbine based on fluid-structure coupling[J]. Chinese journal of hydrodynamics, 2008, 23(6):715-721.(in Chinese)
[10] 梁权伟, 王正伟, 方源. 考虑流固耦合的混流式水轮机转轮模态分析[J]. 水力发电学报, 2004, 23(3):116-120.
LIANG Quanwei, WANG Zhengwei, FANG Yuan. Modal analysis of francis turbine with considering FSI[J]. Journal of hydroelectric engineering, 2004, 23(3):116-120.(in Chinese)
[11] 刘德民,刘小兵,李娟. 基于流固耦合的水轮机振动分析[J]. 流体传动与控制,2008(1):21-25.
[12] LIU Demin, LIU Xiaojun, LI Juan. Vibration analysis of turbine based on fluid structure coupling[J]. Fluid power transmission and control, 2008(1): 21-25.(in Chinese)
[13] 廖翠林, 王福军. 质量矩阵对水轮机组固有振动模态计算结果的影响[J]. 水力发电学报, 2008, 27(5):153-157.
LIAO Cuilin, WANG Fujun. Influence of mass matrix on natural model of hydraulic turbine[J]. Journal of hydroelectric engineering, 2008, 27(5):153-157.(in Chinese)
[14] 廖伟丽, 徐斌, 逯鹏, 等. 部分负荷下混流式水轮机转轮叶片变形对流场的影响[J]. 机械工程学报, 2006, 42(6): 55-59.
LIAO Weili, XU Bin, LU Peng, et al. Influence of runner blade deformation on fluid field of francis turbine under part load[J]. Chinese journal of mechanical engineering, 2006, 42(6): 55-59.(in Chinese)
[15] 徐建国. 轴流泵叶片应力与模态分析[D]. 扬州:扬州大学,2008.
[16] 施卫东, 郭艳磊, 张德胜, 等. 大型潜水轴流泵转子部件湿模态数值模拟[J]. 农业工程学报, 2013, 29(24):72-78.
SHI Weidong, GUO Yanlei, ZHANG Desheng, et al. Numerical simulation on modal of large submersible axial-flow pump rotor[J]. Transactions of the CSAE, 2013, 29(24):72-78.(in Chinese)
[17] 代翠, 柏宇星, 董亮, 等. 离心泵作透平壳体模态分析[J]. 排灌机械工程学报, 2015, 33(10):835-839. 浏览
DAI Cui, BO Yuxing, DONG Liang, et al. Modal analysis of centrifugal pump casing under pumps as turbines[J]. Journal of drainage and irrigation machinery engineering, 2015, 33(10):835-839.(in Chinese)
[18] 张新, 郑源, 钱钧, 等. 基于流固耦合的卧式轴流泵叶轮模态分析[J]. 水电能源科学, 2015, 33(7): 164-167.
ZHANG Xin, ZHENG Yuan, QIAN Jun, et al. Modal analysis of horizontal-axial-flow pump impeller based on fluid solid coupling[J]. Water resources and power, 2015, 33(7): 164-167.(in Chinese)
[19] 张正阳, 郑源, 张新. 预应力与水介质对轴流泵叶轮模态的影响[J]. 水电能源科学, 2015, 33(4):160-163.
ZHANG Zhengyang, ZHENG Yuan, ZHANG Xin. Influence of pre-stress and aqueous medium on impeller modal of axial-flow pump[J]. Water resources and power, 2015, 33(4): 160-163.(in Chinese)
[1] WANG Lihui, SHI Wei, SHEN Changrong, XU Lei. Numerical analysis and prediction of hydraulic performance of vertical axial-flow pump system model[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(9): 776-782.
[2] YAN Hao, CHAI Liping, LI Yue, LI Qiang, SHI Haixia. Numerical calculation on cavitation range of large-scale drainage pumps system[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(8): 679-685.
[3] SHI Lei, ZHANG Desheng, CHEN Jian, GENG Linlin, LIU Junlong. Analysis on characteristics of tip cavitation in an axial-flow pump based on PANS model[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(7): 590-596.
[4] XIA Shuijing, YUAN Jianping, SUN Xiao, ZHOU Banglun, LI Yanjun. Parametric modeling and multi-parameter optimization of axial-flow pump blade[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(7): 603-607.
[5] CAO Weidong, LIU Bing, ZHANG Yining, LIU Guanghui. Numerical simulation on modal of mine emergency drainage multistage pump rotor[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(6): 477-482.
[6] QIU Jing, ZHAO Binjuan, ZHAO Youfei, CHEN Huilong, ZHANG Chenghu. Impact of tongue angles on hydraulic and structural performance of double-channel pump based on fluid-structure interaction[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(6): 496-503.
[7] WANG Ning, HUANG Biao, WU Qin, WANG Guoyu. Experiment and numerical simulation of vibration characteristics of hydrofoil in cavitating flow[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(4): 321-327.
[8] ZHOU Daqing, LIU Yuefei. Numerical simulation of axial pump unit startup process using VOF model[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(4): 307-312.
[9] WANG Dangxiong, CAO Weidong, ZHANG Yining, LIU Xiaojuan, MA Jinxing. Effects of volute cross-section shape and impeller position on volute type axial flow pump performance[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(2): 105-109.
[10] CHANG Hao, LIU Jianrui, WU Yongsheng, GAO Zhenjun, TANG Fujun. Modal analysis of a high flow self-priming centrifugal pump shaft and crank-shaft[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(12): 1035-1039.
[11] SHI Lijian, TANG Fangping, XIE Rongsheng, XIE Chuanliu. Effects of hub/tip ratio on hydraulic performance of axial-flow pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(12): 1045-1050.
[12] FU Heng, LU Jinling, CHEN Nan, FENG Jianjun, CHEN Senlin, LUO Xingqi. Numerical simulations on clocking effect of impeller-stator in multistage axial-flow pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(11): 934-940.
[13] Ma Pengfei, Wang Jun, Liu Weiwei, Cai Kuiyi. Effect of elbow on guide vane region flow for a bidirectional axial flow pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2015, 33(8): 645-650.
[14] Dong Xinghua, Guo Yanlei, Bi Zhen, Li Yibin, Cheng Xiaorui. Internal and external characteristics of axial-flow pump based on coupling CFX with Workbench[J]. Journal of Drainage and Irrigation Machinery Engin, 2015, 33(6): 488-493.
[15] Liu Jianrui, Chen Bin, Zhang Jinfeng, Luo Yin,Tang Fujun. Modal analysis for rotor of residual heat removal pump in water[J]. Journal of Drainage and Irrigation Machinery Engin, 2015, 33(4): 290-295.

Copyright © 2011 Journal of Drainage and Irrigation Machinery Engineering
Support by Beijing Magtech Co.Ltd   E-mail: support@magtech.com.cn