排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2011, Vol. 29 Issue (1): 11-15    DOI: dio:10.3969/j.issn.1674—8530.2011.01.003
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于CFD的轴流泵空化特性预测
杨正军1,王福军1,刘竹青1,张志民2
(1.中国农业大学 水利与土木程学院,北京100083;2.中囤水利水电科学研究院,北京100038)
Prediction of cavitation performance of axial—flow pump based on CFD
Yang Zhengjunl,Wang Fujunl,Liu Zhuqing1,Zhang Zhimin2
(1.College of Conservancy and Civil Engineering,China Ashcultural University,Beijing 100083,China;2.China Institute ofWater
Resources and Hydropower Research,Beijing 100038,China)
 全文: PDF (0 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 摘   要:基于空泡动力学和汽液两相流理论,应用计算流体动力学(CFD)技术模拟了轴流泵在不同进口压力条件下(包含轴流泵中未发生空化和发生剧烈空化的多种情况)的流场,研究了随 着空化发生、发展速度场及压力场变化过程,并对轴流泵能量特性、空化性能进行了预测。结果表明,在非空化条件下,CFD计算可较准确地预测水泵扬程等能量特性,预测值与试验值相差在2%以内;在空化条件下,CFD计算成功地捕获到了空化发生、发展过程;流场中空化发生直接影响叶轮叶片上的压力分布,进而影响水泵的扬程、轴功率等外特性;在发生空化条件下,导叶背面进水边靠近轮缘位置也会出现空化现象;在叶轮各个通道内空化区域分布相似。轴对称性明显.而导叶体内各个通道的空化区域分布差异大,呈明显的非轴对称分布,该非轴对称性的空化区域也是空化造成轴流泵不稳定运行的一个因素。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨正军
王福军
刘竹青
张志民
关键词轴流泵   空化   性能预测   计算流体动力学     
Abstract: Abstract:The flow field in an axial-flow pump at different inlet pressure conditions including cavitating and non-cavitating conditions was simulated by using the computational fluid dynamics(CFD)approach based on theory of bubble dynamics and steam-liquid two-phase flow.The velocity field and pressure
distribution were analysed during cavitation progress and the pump characteristics were predicted.The results show that under the non—cavitating condition,the pump head-flow relationship is well predicted with an inaccuracy within 2%.While under the cavitating condition。the cavitation occurring and develo-ping processes are captured successfully by CFD simulation.The cavitation directly affects the pressure distribution on impeller blade surfaces,and also results in change of the pump head and power eharacteristics.Under the cavitation condition,the cavitation area can be found at the leading edge of the guidevane suction sides.Similarity of the cavitation distribution are found among the different impeller passages.But significant differences of the cavitation distribution are revealed among the different guide vanepassages.which is one of the primary factors that result in unstable operation of an axial-flow pump.
Key wordsxial-flow pump   cavitation   performance prediction   computational fluid dynamics   
收稿日期: 2010-08-27; 出版日期: 2011-01-30
基金资助:

中央高校培本科研业务费专项资金资助项目(15059201:TG0901)

通讯作者: 刘竹青(1973一),男,山西武乡人,副教授(通讯作者,lzq@cau.edu.cn).主要从事流体机械性能研究.   
作者简介: 杨正军(1982一),男,内蒙古呼和浩特人.博士研究生((mryangzj@126.corn).主要从事流体机械性能研究.
引用本文:   
杨正军,王福军,刘竹青等. 基于CFD的轴流泵空化特性预测[J]. 排灌机械工程学报, 2011, 29(1): 11-15.
YANG Zheng-Jun,WANG Fu-Jun,LIU Zhu-Qing et al. Prediction of cavitation performance of axial—flow pump based on CFD[J]. Journal of Drainage and Irrigation Machinery Engin, 2011, 29(1): 11-15.
 
[1] 王福军, 黎耀军, 王文娥, 等. 水泵CFD应用中的若干问题与思考[J]. 排灌机械,2005, 23(5): 1-10.
Wang Fujun, Li Yaojun, Wang Wen′e, et al. Analysis on CFD application in water pumps[J]. Drainage and Irrigation Machinery, 2005, 23(5): 1-10. (in Chinese)
[2] 王正伟, 沈建华, 方勇耕, 等. 轴流式水轮机内流场整体三维数值解析[J]. 浙江水利水电专科学校学报, 2005, 17(1): 33-35.
Wang Zhengwei, Shen Jianhua, Fang Yonggeng, et al. Three dimensional numerical analysis of intemal flow field of axial flow turbine[J]. Journal of Zhejiang Water Conservancy and Hydropower College, 2005, 17(1): 33-35. (in Chinese)
[3] 卢 池, 陈次昌, 杨昌明, 等. 低比转速离心泵内部流场的数值模拟[J]. 排灌机械, 2005, 23(6): 6-9.
Lu Chi, Chen Cichang, Yang Changming, et al. Numerical simulation of flow field in lowspecificspeed centrifugal pump[J]. Drainage and Irrigation Machinery, 2005, 23(6): 6-9. (in Chinese)
[4] Coutier D O, Pouffary B, Reboud J L, et al. Cavitation performance of a centrifugal pump: numerical and experimental investigations [C]∥Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems. Lausanne: [s.n.], 2002.
[5] Youcef A B, Farhat M, Jeam L K, et al. Experimental and numerical cavitation flow analysis of an industrial inducer[C]∥Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems. Stockholm, Sweden: [s.n.], 2004.
[6] Balint D, Resiga R, Muntean S, et al. Numerical simulation and analysis of twophase cavitating flow in Kaplan turbines[C]∥Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems. Yokohama: [s.n.], 2006.
[7] 龙新平, 程 茜, 韩 宁, 等. 射流泵空化流动的数值模拟[J]. 排灌机械工程学报, 2010, 28(1): 7-11,17.
Long Xinping, Cheng Qian, Han Ning, et al. Numerical simulation on cavitating flow within jet pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(1): 7-11,17. (in Chinese)
[8] Imene M, Farid B, Robert R. Comparison of computational results obtained from a homogeneous cavitation model with experimental investigation of three inducers [J]. Journal of Fluids Engineering, 2006, 128(11): 1308-1323.
[9] Gabriel D C, Monica S L, Thi C V. Experimental study and numerical simulation of the FLINDT draft tube rotating vortex [J]. Journal of Fluids Engineering, 2007, 129(2): 146-158.
[10] Plesset M S. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16:228-231.
[11] Senocak I,Shyy W. Numerical simulation of turbulent flows with sheet cavitation[C]∥Proceedings of the 4th International Symposium on Cavitation. Kpasadena, CA: [s.n.], 2001.
[1] 刘竹青1, 肖若富1, 吕腾飞1, 李述林2. 弯掠叶片对轴流泵驼峰及空化性能的影响[J]. 排灌机械工程学报, 2012, 30(3): 270-273.
[2] 董亮, 刘厚林, 谈明高, 王凯, 王勇. 离心泵全流场与非全流场数值计算[J]. 排灌机械工程学报, 2012, 30(3): 274-278.
[3] 郑源1, 杨春霞2, 周大庆1, 沈明辉3, 李效旭2. 卧轴双转轮混流式水轮机的优化设计[J]. 排灌机械工程学报, 2012, 30(3): 341-345.
[4] 邴浩, 曹树良, 谭磊, 陆力. 混流泵导叶对其性能的影响[J]. 排灌机械工程学报, 2012, 30(2): 125-130.
[5] 常书平, 王永生. 基于CFD的混流泵空化特性研究[J]. 排灌机械工程学报, 2012, 30(2): 171-175.
[6] 李伟, 施卫东, 张华, 裴冰, 陆伟刚. 基于CFD的发动机冷却水泵汽蚀性能预测[J]. 排灌机械工程学报, 2012, 30(2): 176-180.
[7] 杨敏官, 尹必行, 康灿, 孙鑫恺, 车占富. 绕水翼非定常空化流场数值模拟[J]. 排灌机械工程学报, 2012, 30(2): 192-197.
[8] 朱荣生, 王韬, 付强, 陈景俊. 基于CFD技术的核电站上充泵全流场数值模拟[J]. 排灌机械工程学报, 2012, 30(1): 30-34.
[9] 宋宇, 曹树良. 考虑不可凝结气体的空化流模型及数值模拟[J]. 排灌机械工程学报, 2012, 30(1): 1-5.
[10] 陈红勋, 刘卫伟, 见 文, 魏培茹, 朱 兵. 基于流动控制技术的低比转速离心泵叶轮研发[J]. 排灌机械工程学报, 2011, 29(6): 466-470.
[11] 肖若富, 吕腾飞, 王福军, 刘竹青. 双吸式双蜗壳泵隔板优化设计[J]. 排灌机械工程学报, 2011, 29(6): 477-482.
[12] 郑 源, 茅媛婷, 周大庆, 张 单. 低扬程大流量泵装置马鞍区的流动特性[J]. 排灌机械工程学报, 2011, 29(5): 369-373.
[13] 高 波, 杨敏官, 吴承福, 谌志伟. BPX型排水泵内流分析及降噪方案[J]. 排灌机械工程学报, 2011, 29(5): 401-405.
[14] 杨 华, 孙丹丹, 汤方平, 张雪峰. 轴流泵非稳定工况下叶轮进口流场试验研究[J]. 排灌机械工程学报, 2011, 29(5): 406-410.
[15] 朱红耕, 戴龙洋, 张仁田, 朱国贤, 吕赛军, 费海蓉. 新型竖井贯流泵装置研发与数值分析[J]. 排灌机械工程学报, 2011, 29(5): 418-422.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved