排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2013, Vol. 31 Issue (5): 379-383    DOI: 10.3969/j.issn.1674-8530.2013.05.003
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
贯流泵内部湍流流动及叶轮流固耦合特性
唐学林, 贾玉霞, 王福军, 周大庆, 肖若富, 吴玉林, 刘竹青
(1.中国农业大学水利与土木工程学院, 北京 100083; 2.河海大学能源与电气学院, 江苏 南京 210098; 3.清华大学水沙科学与水利水电工程国家重点实验室, 北京 100084)
Turbulent flows in tubular pump and fluidstructure interaction characteristics of impeller
(1.College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China; 2.College of Energy and Electric, Hohai University, Nanjing, Jiangsu 210098, China; 3.State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China)
 全文: PDF (2260 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于RNG k-ε湍流模型,应用Ansys Workbench软件,对前置竖井式贯流泵内部湍流流动和结构静应力进行数值分析.模拟显示不同工况下泵的外特性曲线和试验值总体变化趋势一致,模拟的扬程比试验值稍高,效率稍低,但误差都保持在10%内;除出水流道隔断前部外,贯流泵整个流道流态均匀;出水流道前段的螺旋线分布的流线表明,水流在经过导叶后存在未回收的速度环量;在设计工况下,压力最小值出现在吸力面靠近进口边,此处最易导致空化.进一步采用单向流固耦合方法,对叶轮在不同工况下的静应力和总变形量进行分析,结果表明:设计工况下,叶轮的最大等效应力出现在叶片压力面和轮毂相交处,叶轮变形的总位移随着半径增大而不断增大,最大变形量出现在轮缘附近.计算结果将为贯流泵的优化设计提供一定参考.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐学林
贾玉霞
王福军
周大庆
肖若富
吴玉林
刘竹青
关键词贯流泵   数值模拟   流固耦合   外特性   结构应力     
Abstract: The RNG k-ε turbulence model and the Ansys Workbench software were used to numerically investigate internal flows in a frontpositioned shaft tubular pump and fluidstructure interaction in its impeller. The simulated performances under different operation conditions are consistent with experimental data.Even though the calculated head is higher and the efficiency is lower than the experimental data, their errors are less than 10%. The velocity and pressure of fluid are uniformly distributed in the whole passage of the pump except in the discharge passage. The spiral streamlines in the front of the discharge passage show that the fluid has a residual velocity circulation after it leaves the vaned diffuser. At the design flow rate, a minimum pressure is seen on the suction surface of blade near the blade leading edge, where cavitation will be apt to occur. In addition, a static structural analysis on the impeller was carried out based on oneway fluidstructure coupling method and the stress and deformation of blades were predicted under different operating conditions. The results show that at the design flow rate, there is a maximal equivalent stress on the pressure surface of blade but at the junction of blade and hub. The total deformation of blade increases with radius, and there is a maximum deformation near the impeller tip. The calculated results will provide a reference for optimization design of tubular pumps.
Key words    tubular pump   numerical simulation   fluidstructure coupling   external performances   structural stresses   
收稿日期: 2012-12-24; 出版日期: 2013-05-31
基金资助:

 国家自然科学基金资助项目(50976124,51179192,51139007); 新世纪优秀人才支持计划项目(NETC-10-0784)

通讯作者: 刘竹青(1973—),男,山西长治人,教授,博士生导师(通信作者,lzq@cau.edu.cn),主要从事新型风力机研制及动力特性研究.   
作者简介: 唐学林(1969—),男,河南南阳人,教授,博士生导师(xltang@mail.tsinghua.edu.cn),主要从事水力机械及多相流研究.
引用本文:   
唐学林,贾玉霞,王福军等. 贯流泵内部湍流流动及叶轮流固耦合特性[J]. 排灌机械工程学报, 2013, 31(5): 379-383.
TANG Xue-Lin,JIA Yu-Xia,WANG Fu-Jun et al. Turbulent flows in tubular pump and fluidstructure interaction characteristics of impeller[J]. Journal of Drainage and Irrigation Machinery Engin, 2013, 31(5): 379-383.
 
[1] Zhu Honggeng, Zhang Rentian, Yao Linbi, et al. Numerical analysis of shaft tubular pumping systems[C]//Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. Changsha:[s.n.],2011: 491-495.
[2] 肖玉平,郑源,江如汉,等. 竖井式贯流泵装置的数值模拟与优化[J]. 水电能源科学, 2010, 28(2): 143-145.
[3] Xiao Yuping, Zheng Yuan, Jiang Ruhan, et al, Numerical simulation and optimization of shaft tubular pump device[J]. Water Resources and Power, 2010, 28(2): 143-145. (in Chinese)
[4] 金燕, 刘超, 汤方平. 后置灯泡贯流泵三维紊流计算[J]. 机械工程学报, 2010, 46(22): 167-174.
Jin Yan, Liu Chao, Tang Fangping. 3D numerical simulation of turbulent flow in postpositional bulb tubular pump[J]. Journal of Mechanical Engineering, 2010, 46(22): 167-174. (in Chinese)
[5] 刘君, 郑源, 周大庆, 等. 前、后置竖井贯流泵装置基本流态分析[J]. 农业机械学报, 2010, 41(S1): 32-38.
Liu Jun, Zheng Yuan, Zhou Daqing, et al. Analysis of basic flow pattern in shaft frontpositioned and shaft rearpositioned tubular pump systems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(S1): 32-38. (in Chinese)
[6] 郑小波, 罗兴琦, 邬海军. 基于CFD分析的轴流式转轮叶片刚强度分析[J]. 水力发电学报, 2006, 25(5):121-124.
Zheng Xiaobo, Luo Xingqi, Wu Haijun. Rigidity/strength analysis of the axial flow blades based on CFD[J]. Journal of Hydroelectric Engineering, 2006, 25(5): 121-124. (in Chinese)
[7] 孔繁余, 王婷, 王文廷,等. 基于流固耦合的高温泵叶轮应力有限元分析[J]. 江苏大学学报: 自然科学版, 2012, 33(3): 269-273.
Kong Fanyu, Wang Ting, Wang Wenting, et al. Finite element analysis of high temperature pump impeller stress based on fluidsolid coupling[J]. Journal of Jiangsu University: Natural Science Edition, 2012, 33(3): 269-273. (in Chinese)
[8] 王洋, 王洪玉, 张翔, 等. 基于流固耦合理论的离心泵冲压焊接叶轮强度分析[J]. 农业工程学报, 2011, 27(3): 131-136.
[9] Wang Yang, Wang Hongyu, Zhang Xiang, et al. Strength analysis on stamping and welding impeller in centrifugal pump based on fluidstructure interaction theorem[J]. Transactions of the CSAE, 2011, 27(3): 111-114. (in Chinese)
[10] 赵薇. 大型水轮机组流固耦合特性研究[D]. 北京: 中国农业大学水利与土木工程学院, 2008.
[11] Wang Xin, Luo Shaoze. Vibration analysis of large bulb tubular pumping station considering flowstructure interaction[C]//Proceedings of the Power and Engineering Conference. Chengdu:[s.n.], 2010.
[12] Wang Wenquan, He Xiaoqiao, Zhang Lixiang, et al. Strongly coupled simulation of fluidstructure interaction in a Francis hydroturbine[J]. International Journal for Numerical Methods in Fluids, 2009, 60(5): 515-538.
[13] Münch C, Ausoni P, Braun O, et al. Fluidstructure coupling for an oscillating hydrofoil[J]. Journal of Fluids and Structures, 2010, 26(6): 1018-1033.
[14] Ahmadi A, Keramat A. Investigation of fluidstructure interaction with various types of junction coupling[J]. Journal of Fluids and Structures, 2010,26(7/8): 1123-1141.
[15] Campbell R L. Fluidstructure interaction and inverse design simulations for flexible turbomachinery [D]. The Pennsylvania State: College of Engineering, The Pennsylvania State University, 2010.
[1] 江伟,李国君,张新盛. 离心泵叶片出口边倾斜角对压力脉动的影响[J]. 排灌机械工程学报, 2013, 31(5): 369-372.
[2] 李仁年, 刘殿兴, 董志强, 魏显著. 水泵水轮机“S”形区全流道数值模拟[J]. 排灌机械工程学报, 2013, 31(5): 401-405.
[3] 石喜, 吕宏兴, 朱德兰, 孙斌, 曹彪. 枝状管网水力瞬变工况的试验与数值模拟[J]. 排灌机械工程学报, 2013, 31(5): 406-412.
[4] 周大庆, 吴思源, 郑源. 基于CFD的氧化沟推流器能量配置计算[J]. 排灌机械工程学报, 2013, 31(5): 422-427.
[5] 赵斌娟, 侯多华, 陈汇龙, 刘志斌. 叶轮流道结构对双流道泵性能的影响[J]. 排灌机械工程学报, 2013, 31(4): 294-299.
[6] 杨魏, 刘竹青, 吴玉林, 高德瑜. 上向流水轮机中自由液面流动的数值模拟[J]. 排灌机械工程学报, 2013, 31(4): 305-308.
[7] 李树勋, 侯英哲, 李连翠 周世豪. 液流旋启式止回阀关闭动态特性数值模拟[J]. 排灌机械工程学报, 2013, 31(4): 335-339.
[8] 陈铁军, 郭鹏程, 骆翼, 吴玉林. 基于反转双吸泵的液力透平全特性的数值预测[J]. 排灌机械工程学报, 2013, 31(3): 195-199.
[9] 王洋, 王维军, 王洪玉, 叶道星, 李贵东. 冲压焊接多级离心泵叶轮的疲劳强度[J]. 排灌机械工程学报, 2013, 31(3): 215-219.
[10] 杨春霞, 郑源, 郑璐, 李效旭, 周大庆, 李玲玉. 超低水头竖井贯流式水轮机转轮数值模拟优化[J]. 排灌机械工程学报, 2013, 31(3): 225-229.
[11] 汪朝晖, 高全杰, 徐占民, 王维. 新型气液混合喷油刀梁设计及数值模拟[J]. 排灌机械工程学报, 2013, 31(3): 236-241.
[12] 唐学林, 黄微, 王福军, 吴玉林, 刘竹青. 灯泡式贯流泵空化流的数值研究和性能预测[J]. 排灌机械工程学报, 2013, 31(3): 185-189.
[13] 张生昌, 张玉林, 方志明, 柯愈龙. 基于CFD的球阀三维流场数值模拟[J]. 排灌机械工程学报, 2013, 31(2): 157-161.
[14] 江伟, 李国君, 张新盛. 压水室结构对离心泵径向力影响的数值分析[J]. 排灌机械工程学报, 2013, 31(2): 93-97.
[15] 杨雪龙, 龙新平, 肖龙洲, 吕桥. 不同湍流模型对射流泵内部流场模拟的影响[J]. 排灌机械工程学报, 2013, 31(2): 98-102.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved