排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2013, Vol. 31 Issue (3): 265-269    DOI: 10.3969/j.issn.1674-8530.2013.03.016
农业水土工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
滴头插入对滴灌毛管水头损失影响试验研究
 仇振杰, 朱德兰, 张林

(西北农林科技大学中国旱区节水农业研究院, 陕西 杨凌 712100)
Experimental study on effect of online emitter on head loss in drip irrigation laterals
 CHOU  Zhen-Jie, ZHU  De-Lan, ZHANG  Lin
(Institute of Watersaving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, China)
 全文: PDF (1420 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了提高滴灌毛管水力设计精度,通过试验研究了因滴头插入引起的毛管局部水头损失,根据试验现象分析了毛管局部水头损失占沿程水头损失比例hj/hf、毛管局部水头损失系数ξ,与滴头类型、滴头间距以及雷诺数之间的关系.结果表明:对于不同的滴头和滴头间距,毛管局部水头损失占沿程水头损失比例hj/hf差别较大.在相同间距下,迷宫流道滴头插入导致的hj/hf要大于压力补偿式滴头;对于同一类型滴头,滴头间距越小,局部水头损失越明显,hj/hf越大,且均大于微灌工程技术规范规定;若按规范取沿程水头损失的01~02计算局部水头损失,将导致滴灌工程设计中水头损失计算偏小.不同类型的滴头,毛管局部水头损失系数差异较大,其中迷宫流道滴头ξ基本在06以上,而压力补偿式滴头ξ为03~05,且ξ随滴头间距减小而增大、随雷诺数增大而减小,雷诺数越大,ξ变化越趋于平稳.通过对试验数据进行回归与统计分析,提出了毛管局部水头损失系数计算公式,相关系数R2为0953.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇振杰
朱德兰
张林
关键词滴灌   插入式滴头   局部水头损失   局部水头损失系数   沿程水头损失     
Abstract: For hydraulic design of drip irrigation lateral to be improved, the minor head loss caused from online emitters in drip irrigation laterals was explored experimentally. Based on the experimental results, the minor head loss coefficient ξ and the ratio of the minor head loss over the frictional head loss, hj/hf, were correlated to Reynolds number and emitter spacing for different types of emitter. It was shown that hj/hf is considerably dependent on type of emitter and emitter spacing. At the same emitter spacing, hj/hf caused from online labyrinth channel emitters is greater than that from pressure compensating emitters; for the same type of emitters, however, hj/hf is inversely proportional to emitter spacing. Importantly, all the hj/hf values are larger than those specified in the Technical Standard of MicroIrrigation Project (SL-103-95). According to the standard, the minor head loss is about (0.1-0.2)% of the total frictional head loss; obviously the total head loss will be underestimated by this. Further, the minor head loss coefficient ξ are related to the type of emitter, Reynolds number and emitter spacing. For labyrinth channel emitters the coefficient is higher than 0.6; however, for compensating pressure emitters, it is ranged in 0.3-0.5. The coefficient increases with decreasing emitter spacing, and declines with increasing Reynolds number. An empirical formula for the coefficient was proposed by regression.
Key wordsdrip irrigation   online emitter   local head loss   local head loss coefficient   frictional head loss   
收稿日期: 2012-05-13; 出版日期: 2013-03-31
基金资助:

“十二五”国家科技支撑计划项目(2011BAD29B02)

通讯作者: 朱德兰(1969—),女,陕西杨凌人,教授,博士生导师(通信作者,dlzhu@126.com),主要从事节水灌溉理论与新技术研究.   
作者简介: 仇振杰(1988—),男,陕西杨凌人,硕士研究生(jiededang@163.com),主要从事节水灌溉理论研究.
引用本文:   
仇振杰,朱德兰,张林. 滴头插入对滴灌毛管水头损失影响试验研究[J]. 排灌机械工程学报, 2013, 31(3): 265-269.
CHOU Zhen-Jie,ZHU De-Lan,ZHANG Lin. Experimental study on effect of online emitter on head loss in drip irrigation laterals[J]. Journal of Drainage and Irrigation Machinery Engin, 2013, 31(3): 265-269.
 
[1] Yildirim G. An assessment of hydraulic design of trickle laterals considering effect of minor losses[J]. Irrigation and Drainage, 2007,56(4):399-421.
[2] Provenzano G,Pumo D. Experimental analysis of local pressure losses for microirrigation laterals[J]. Journal of Irrigation and Drainage Engineering,2004,130(4):318-324.
[3] 吴政文,张学军.微喷带沿程水头损失的试验研究[J].节水灌溉,2011(8):40-42.
[4] Wu Zhengwen,Zhang Xuejun. Experimental study on frictional head loss of microsprinkling hose[J]. Water Saving Irrigation, 2011(8): 40-42. (in Chinese)
[5] Dogan E, Kirnak H. Water temperature and system pressure effect on drip lateral properties[J]. Irrigation Science, 2010,28(5):407-419.
[6] AlAmoud A I. Significance of energy losses due to emitter connections in trickle irrigation lines[J]. Journal of Agricultural Engineering Research, 1995,60(1):1-5.
[7] Yildirim G. Total energy loss assessment for trickle lateral lines equipped with integrated inline and online emitters[J]. Irrigation Science, 2010,28(4):341-352.
[8] Thompson E J, Merkley G P, Keller A A, et al. Experimental determination of the hydraulic properties of lowpressure, layflat drip irrigation systems[J]. Journal of Irrigation and Drainage Engineering, 2011,137(1):37-48.
[9] 吴持恭.水力学(上册)[M]. 4版. 北京:高等教育出版社,2008:132.
[10] Vekariya P B, Subbaiah R, Mashru H H. Hydraulics of microtube emitters: A dimensional analysis approach[J]. Irrigation Science, 2011,29(4):341-350.
[11] 吴玉明. 局部阻力产生的原因和采取的措施[J]. 长春理工大学学报:高教版,2008,3(1):175-177.
Wu Yuming. Brief talking about the cause of partial resistance and the taken measures[J]. Journal of Changchun University of Science and Technology: Higher Education Edition,2008,3(1):175-177. (in Chinese)
[12] 贺益英,赵懿,孙淑卿,等.输水管线中弯管局部阻力的相邻影响[J].水利学报,2004(2):17-20.
[13] He Yiying,Zhao Yi,Sun Shuqing,et al. Interaction of local loss between bends in pipe line[J]. Journal of Hydraulic Engineering,2004(2):17-20.(in Chinese)
[1] 胡永翔, 李援农, 张莹, 蒋耿民. 基于水分胁迫系数的枣树园土壤含水率估算[J]. 排灌机械工程学报, 2013, 31(3): 270-276.
[2] 李毅, 关冰艺. 滴灌两点源交汇入渗的斥水土壤水分运动规律[J]. 排灌机械工程学报, 2013, 31(1): 81-86.
[3] 张林, 吴普特, 朱德兰, 范兴科. 多点源滴灌条件下土壤水分运移模拟试验研究[J]. 排灌机械工程学报, 2012, 30(2): 237-243.
[4] 洪添胜, 冯瑞珏, 李加念, 叶智杰, 卢加纳. 单节干电池供电的滴灌控制器的设计与试验[J]. 排灌机械工程学报, 2011, 29(5): 455-460.
[5] 李 刚, 王晓愚, 白 丹. 地下滴灌中毛管水力计算的数学模型与试验[J]. 排灌机械工程学报, 2011, 29(1): 87-92.
[6] 吴普特, 朱德兰, 汪有科. 涌泉根灌技术研究与应用[J]. 排灌机械工程学报, 2010, 28(4): 354-357.
[7] 朱德兰, 吴普特, 李岚斌, 张 琛, 王 剑. 自压滴灌支管灌水单元设计方法[J]. 排灌机械工程学报, 2010, 28(1): 59-62.
[8] 王新坤, 李亚飞. 单翼迷宫灌水器进口流场数值模拟与结构优化[J]. 排灌机械工程学报, 2009, 27(1): 60-63.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved