排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2012, Vol. 30 Issue (6): 670-676    DOI: 10.3969/j.issn.1674-8530.2012.06.011
水利水电工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
不同突扩比下空间淹没水跃的水力计算
 郑铁刚, 戴会超, 丁全林
(1.中国水利水电科学研究院水力学研究所, 北京 100038; 2.河海大学水文水资源与水利工程科学国家重点实验室, 江苏 南京 210098;
3.河海大学力学与材料学院, 江苏 南京 210098)
Computation of spatial submerged hydraulic jump with different abrupt expansion ratios
 ZHENG  Tie-Gang, DAI  Hui-Chao, DING  Quan-Lin
(1.Department of Hydraulics,China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 2.State Key Laboratory of HydrologyWater Resources and Hydraulic Engineering, Hohai University,Nanjing, Jiangsu 210098, China; 3.College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 210098, China)
 全文: PDF (1986 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 突扩能够使局部范围内水流紊动剧烈,可以作为水利工程中消能工的一种重要方式.为了探讨突扩比对下游流体水力特性的影响规律,基于RNG k-ε紊流模型和PISO压力-速度耦合算法,采用非均匀结构网格技术,建立了三维紊流数学模型,对突扩比分别为1000,0833,0.667,0500,0333等5种空间水跃进行了多工况数值模拟,结合试验数据,计算结果量纲一化,讨论了不同突扩比大小对下游水力性能的影响,并分析了下游流速、紊动能及消能率等随突扩比的变化规律.数值计算结果表明:突扩比对下游流速、紊动能及消能率影响显著,突扩比越小,下游流速变化越显著,主流在空间内扩散愈迅速,流态转变越明显;随着突扩比的减小,紊动应力愈小,紊动能量愈小,而消能率越大;突扩水跃较典型水跃消能效果明显增强,当突扩比小于0500时,消能率增大不再显著.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑铁刚
戴会超
丁全林
关键词    空间水跃   突扩比   消能率   水力特性   典型水跃   紊流数值模拟     
Abstract:  Since the abrupt expansion can enlarge turbulence intensity level in a local range of water flow, it can be utilized as kind of important energy dissipaters. In order to study effects of abrupt expansion ratio on hydraulic characteristics of down stream flow, spatial submerged hydraulic jumps with the abrupt expansion ratios of 1.000, 0.833, 0.667, 0.500, 0.333 are simulated numerically based on a nonuniform structured mesh, the RNG k-ε  turbulence model and the pressure and velocity coupling algorithmPISO. It was found that the change of abrupt expansion ratio has obvious influence on down stream velocity, turbulence kinetic energy and energy dissipation rate. The smaller the ratio, the more obvious the change in velocity, the faster the primary flow diffuses, and the more clearly the flow pattern transition develops. With decreasing expansion ratio, the smaller the turbulent stresses, the larger the energy dissipation rate. Compared with a typical hydraulic jump, the spatial submerged hydraulic jump possesses greatly improved energy dissipation rate. However, once the ratio is less than 0.5, the dissipation rate on longer is improved obviously yet.
Key wordsspatial hydraulic jump   abrupt expansions ratio   energy dissipation efficiency   typical hydraulic jump   hydraulic characteristic   turbulence numerical simulation   
收稿日期: 2012-04-05; 出版日期: 2012-11-30
基金资助:

国家杰出青年科学基金资助项目(50925932); 国家重点基础研究发展计划项目(2012CB417006)

通讯作者: 戴会超(1965—),男,河北保定人,教授,博士生导师(dai_huichao@hhu.edu.cn),主要从事水利水电工程研究.   
作者简介: 郑铁刚(1983—),男,河北定州人,博士研究生(ztg_1983@163.com),主要从事工程水力学研究.
引用本文:   
郑铁刚,戴会超,丁全林. 不同突扩比下空间淹没水跃的水力计算[J]. 排灌机械工程学报, 2012, 30(6): 670-676.
ZHENG Tie-Gang,DAI Hui-Chao,DING Quan-Lin. Computation of spatial submerged hydraulic jump with different abrupt expansion ratios[J]. Journal of Drainage and Irrigation Machinery Engin, 2012, 30(6): 670-676.
 
[1] Seetha Ram K V, Prasad Rama. Spatial Bjump at sudden channel enlargements with abrupt drop[J]. Journal of Hydraulic Engineering, 1998,124(6):643-646.
[2] Hasan R, Matin A. Experimental study for sequent depth ratio of hydraulic jump in horizontal expanding channel[J]. Journal of Civil Engineering (IEB), 2009,37(1): 1-9.
[3] Deng Jun, Xu Weilin, Zhang Jianming, et al. A new type of plunge pool—Multihorizontal submerged jets[J]. Science in China Series E, Technological Sciences, 2008,51(12): 2128-2141.
[4] Rajaratnam N, Subramanya K. Hydraulic jumps below abrupt symmetrical expansions[J]. Journal of the Hydraulics Division, 1968,94(2):481-504.
[5] Zare H K, Baddour R E. Threedimensional study of spatial submerged hydraulic jump[J]. Canadian Journal of Civil Engineering, 2007,34(9): 1140-1148.
[6] Omid M H, Esmaeeli Varaki M, Narayanan R. Gradually expanding hydraulic jump in a trapezoidal channel[J]. Journal of Hydraulic Research, 2007,45(4): 512-518.
[7] Kashefipour S M, Bakhtiari M. Hydraulic jump in a gradually expanding channel with different divergence angles[C]//33rd IAHR Congress: Water Engineering for a Sustainable Environment. Vancouver, Canada:[s.n.], 2009:91-98.
[8] 刘超, 金燕. 双向流道泵装置内三维流动数值模拟[J]. 农业机械学报, 2011,42(9): 74-78.
Liu Chao, Jin Yan. Numerical simulation on three dimensional flow in twoway reversible pumping system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(9): 74-78.(in Chinese)
[9] 刘沛清. 现代坝工消能防冲原理[M]. 北京: 科学出版社, 2010.
[10] Chandra J, Lal P B. spatial hydraulic jump at axisymmetrical sudden expansions in rectangular channels[J]. Indian Journal of Power and River Valley Development, 1978,28(7): 183-188.
[1] 张金亚, 朱宏武, 徐丙贵, 丁矿, 强睿. 高含气率下增强叶轮内气液均匀混合的方法[J]. 排灌机械工程学报, 2012, 30(6): 641-645.
[2] 程伟平, 章军军, 陈益民, 高悦. 超短竖井式进/出水口的水力控制[J]. 排灌机械工程学报, 2012, 30(5): 548-552.
[3] 王军锋, 王泽, 霍元平, 毛文龙, 张娟娟. 荷电电压、介质物性对静电雾化特征的影响[J]. 排灌机械工程学报, 2012, 30(4): 469-472.
[4] 周奇, 岑国平, 张亮, 陈太红. 变雨强人工模拟降雨自动控制系统设计与试验[J]. 排灌机械工程学报, 2012, 30(4): 473-478.
[5] 徐宇平, 袁寿其, 张金凤, 周建佳, 李彤. ZJ-200-25型螺旋离心泵转子静力学分析[J]. 排灌机械工程学报, 2012, 30(3): 254-259.
[6] 尹则高, 朱慧洁, 曹先伟, 陈更, 郑清鑫. 二级洞塞泄流的消能特性分析[J]. 排灌机械工程学报, 2012, 30(1): 85-90.
[7] 蒋 斌, 王子云, 付祥钊, 王 勇. 气液叉流下受热液膜的热质传递特性[J]. 排灌机械工程学报, 2011, 29(5): 432-436.
[8] 王贞涛, 张星, 黄继伟, 黄俏梅. 机翼形堰绕流流场的PIV测量[J]. 排灌机械工程学报, 2011, 29(4): 338-342.
[9] 陈树人, 尹东富, 魏新华, 裴文超 . 变量喷药自适应神经模糊控制器设计与仿真[J]. 排灌机械工程学报, 2011, 29(3): 272-276.
[10] 杨超君,李直腾,芦玉根, 蒋生发, 郑武. 鼠笼异步磁力联轴器在耐高温磁力泵中的应用[J]. 排灌机械工程学报, 2011, 29(3): 214-218.
[11] 刘厚林, 路明臻, 巫 进, 谈明高, 董 亮, 任 芸. 离心泵内部四面体网格的优化算法[J]. 排灌机械工程学报, 2010, 28(6): 465-469.
[12] 冯卫民, 宋 立, 左 磊, 袁 波. 轴流泵装置三维非定常湍流流场的数值模拟[J]. 排灌机械工程学报, 2010, 28(6): 531-536.
[13] 何秀华, 王 健, 杨 嵩, 毕雨时, 禚虹彩. 三通全扩散/收缩管无阀压电泵的流阻性能[J]. 排灌机械工程学报, 2010, 28(6): 497-501.
[14] 陈红勋,朱 兵,李随波. 轴流泵模型多叶片安放角的数值计算[J]. 排灌机械工程学报, 2010, 28(5): 378-383.
[15] 曾 培, 叶子兆, 李永亮, 孔繁余. 磁力泵滑动轴承磨损检测[J]. 排灌机械工程学报, 2010, 28(5): 412-416.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved