排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2012, Vol. 30 Issue (6): 621-626    DOI: 10.3969/j.issn.1674-8530.2012.06.001
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
地下水源热泵地下水渗流场自适应网格法
 王晓宏, 施安峰, 郑晓磊, 贾江涛

(中国科学技术大学热科学和能源工程系, 安徽 合肥 230027)
Adaptive mesh refinement technique for seepage flow field in groundwater source heat pump system
 WANG  Xiao-Hong, SHI  An-Feng, ZHENG  Xiao-Lei, JIA  Jiang-Tao
(Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China)
 全文: PDF (2150 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 快速高效的数值计算方法对于地下水源热泵采能技术的发展及应用具有重要的实际工程意义.地下含水层的边界通常较为复杂,和非结构化网格相比,采用结构化网格计算方法可以有效减小数学方程离散的复杂度,并有利于发展地下水源热泵系统地下水渗流场自适应网格计算方法.为发展结构化网格计算方法,对位于含水层边界处的网格提出了一个在数学上简单有效的预处理方法,在计算过程中采用界面渗透率取代网格自身渗透率参与实际计算,并对含水层边界处网格的界面渗透率给出相应的计算方法.三维验证算例显示,对于非规则边界,即使采用网格尺度较大的正交规则网格,计算解也十分接近收敛解.提出仅对温度梯度变化较大的区域采用较小尺度的精细网格计算,而温度变化较缓的区域则采用不同层次的粗网格计算,利用自适应网格法计算地下水源热泵地下水渗流场,在保持计算精度的同时,计算速度得到了大幅度提高.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓宏
施安峰
郑晓磊
贾江涛
关键词地下水源热泵   渗流   自适应网格法   等效渗透率     
Abstract: A fast and highly efficient numerical computational method has important practical significance for development and application of the technology in groundwater source heat pumps. Normally the boundary of an aquifer has an irregularshape. Compared with unstructured grids, adopting structured grids can effectively decrease the complexity in discretization of the mathematical equations and is very beneficial for developing an adaptive mesh refinement (AMR) algorithm to simulate the seepage flow field of groundwater source heat pump system. To develop a computational method based on the structured grids, a simple pretreatment method was proposed to deal with the grid cells on the aquifer boundary. In the method, the effective permeability on the interfaces between grid cells rather than those of the grid cells was involved in computations, further an algorithm for calculating the effective permeability on the six faces of a grid cell was proposed. The threedimensional computational examples show that even more coarse cells are adopted a more accurate result can be reached for a domain with irregular boundary. In the AMR algorithm the cell sizes depend on the temperature gradient, i.e. the smaller cell size the lower the gradient; as a result of this, the time consuming for simulating the underground seepage flow in a groundwater source heat pump system is reduced considerably but the accuracy remains the same.
Key wordsgroundwater source heat pump   underground seepage flow   adaptive mesh refinement   effective permeability   
收稿日期: 2012-05-14; 出版日期: 2012-11-30
基金资助:

国家自然科学基金资助项目(11172295); 中国科学院知识创新工程重大项目(KJCX1-YW-21)

通讯作者: 王晓宏(1966—),男,安徽合肥人,教授,博士生导师(xhwang@ustc.edu.cn),主要从事流体力学研究.   
作者简介: 施安峰(1984—),男,江苏盐城人,博士研究生(shianf@ustc.edu.cn),主要从事渗流力学研究.
引用本文:   
王晓宏,施安峰,郑晓磊等. 地下水源热泵地下水渗流场自适应网格法[J]. 排灌机械工程学报, 2012, 30(6): 621-626.
WANG Xiao-Hong,SHI An-Feng,ZHENG Xiao-Lei et al. Adaptive mesh refinement technique for seepage flow field in groundwater source heat pump system[J]. Journal of Drainage and Irrigation Machinery Engin, 2012, 30(6): 621-626.
 
[1] Sanner B, Karytas C, Mendrinos D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe[J].Geothermics, 2003, 32(4/5/6): 579-588.
[2] Abdeen M O. Groundsource heat pumps systems and applications[J].Renewable and Sustainable Energy Reviews, 2008, 12(2): 344-371.
[3] 王秉忱. 我国利用水源、地源热泵技术开发浅层地热能呈现好形势[J].工程建设与设计, 2008 (1): 8-11.
[4] Wang Bingchen. The excellent situation of exploitation of shallow geothermal energy by utilizing the WSHP and GSHP technology in China[J].Construction & Design for Project, 2008 (1): 8-11. (in Chinese)
[5] 周光辉, 张震.蓄能型地下水源热泵在我国推广应用的可行性分析[J].中原工学院学报, 2005, 16(6): 26-28.
Zhou Guanghui, Zhang Zhen.The possibility analysis of the storage energy ground water heat pump expanding and applying in China[J].Journal of Zhongyuan Institute of Technology, 2005, 16(6): 26-28.(in Chinese)
[6] Molz F J, Warman J C, Jones T E. Aquifer storage of heated water—Part I: Field experiment[J]. Ground Water, 1978, 16(6): 234-241.
[7] Papadopulos S S, Larson S P. Aquifer storage of heated water—Part II: Numerical simulation of field results[J]. Ground Water, 1978, 16(6): 242-248.
[8] 张远东, 魏加华, 李宇, 等. 地下水源热泵采能的水-热耦合数值模拟[J]. 天津大学学报:自然科学版, 2006, 39(8): 907-912.
Zhang Yuandong, Wei Jiahua, Li Yu, et al. Simulation of changes in Geotemperature field due to energy abstration from underground aquifers[J].Journal of Tianjin University, 2006, 39(8): 907-912.(in Chinese)
[9] Nagano K, Mochida T, Ochifuji K.Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage[J].Applied Thermal Engineering, 2002, 22(12): 1299-1311.
[10] 倪龙, 马最良. 同井回灌地下水源热泵地下水渗流理论研究[J]. 太阳能学报, 2006, 27(12): 1219-1224.
Ni Long, Ma Zuiliang. Study on the seepage theory for groundwater heat pump with pumping & recharge in the same well[J]. Acta Energiae Solaris Sinica, 2006, 27(12): 1219-1224.(in Chinese)
[11] Paksoy H O, Andersson O, Abacic A, et al. Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer[J]. Renewable Energy, 2000, 19(1/2): 117-122.
[12] Berger M J, Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations[J]. J Comput Phys,1984, 53(3): 484-512.
[13] Hornung R D, Trangenstein J. Adaptive mesh refinement and multilevel iteration for flow in porous media[J]. J Comput Phys, 1997, 136(2): 522-545.
[14] Trangenstein J. Multiscale iterative techniques and adaptive mesh refinement for flow in porous media[J]. Advances in Water Resources, 2002, 25(8/9/10/11/12): 1175-1213.
[15] Wang X H, Quintard M, Darche G. Adaptive mesh refinement for onedimensional threephase flow with phase change in porous media[J]. Numerical Heat Transfer: Part B, 2006, 50(3): 231-268.
[16] 施安峰,王晓宏,罗海山. 三维蒸汽辅助重力驱油过程的自适应网格法[J]. 辽宁工程技术大学学报:自然科学版,2009, 28(S1): 4-7.
Shi Anfeng, Wang Xiaohong, Luo Haishan. Adaptive mesh refinement for threedimensional SAGD process[J]. Journal of Liaoning Technical University:Natural Science, 2009, 28(S1): 4-7.(in Chinese)
没有找到本文相关文献

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved