排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2012, Vol. 30 Issue (5): 598-602    DOI: 10.3969/j.issn.1674-8530.2012.05.021
流体工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
任意曲线坐标系下二维浅水方程的数值模拟
 吴卫国, 薛世峰

(中国石油大学(华东)工程力学系, 山东 青岛 266555)
Numerical simulation of 2D shallow water equation in arbitrary curvilinear coordinates
 WU  Wei-Guo, XUE  Shi-Feng
(Department of Engineering Mechanics, China University of Petroleum, Qingdao, Shandong 266555, China)
 全文: PDF (1465 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 采用拟合边界曲线的方法来构造天然河道、湖泊、港口河口以及海湾的复杂边界问题,建立任意正交曲线网格以克服由于复杂边界而引起的计算困难.在此基础上,推导出任意曲线坐标系下的二维浅水方程、湍流动能方程和湍流动能耗散方程;应用有限差分方法对该方程组进行数值离散,并用交错方向隐式格式实现在计算区域内对任意曲线坐标系下的二维浅水方程进行数值求解.为了验证在任意曲线坐标系下二维浅水方程数值求解方法的可靠性、正确性,以De Vriend的180°平面弯道水槽试验物理模型为例进行数值模拟,结果表明,数值计算的结果和De Vriend的试验结果相当吻合,最大绝对误差值约为10-2,因此,数值计算方法合理可行,可为任意复杂边界的天然河道、湖泊等水域的水动力研究提供有效的计算方法.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴卫国
薛世峰
关键词浅水方程   曲线坐标   交错方向隐式格式   复杂边界   数值模拟     
Abstract: The problems with complex boundary shapes, such as natural river channels, lakes, estuaries and bays, were solved by using the boundary curve fitting methods. Arbitrary orthogonal curvilinear grid was established to overcome the computational difficulties caused by those complex boundaries. Then, a set of derived equations in the arbitrary curvilinear coordinates, including 2D shallow water equation, turbulence kinetic energy equation and dissipation rate equation etc. were numerically discreted by the finite difference method. In addition, the 2D shallow water equation was numerically solved within the computational domain by using the alternating direction implicit (ADI) difference scheme. In order to verify the reliability and correctness of the method, the De Vriend's 180° plane curve flume experiment model was adopted as an example to implement the numerical simulations.  Finally, the simulation outcomes are in excellent agreement with that experimental results with a maximum error as large as approximate 10-2, indicating that the numerical method in this paper is reasonable and feasible. Hence, the method will provide an efficient way for calculating hydrodynamics of water bodies with arbitrary complex boundaries, such as natural river channels and lakes.
Key wordsshallow water equation   curvilinear coordinates   ADI difference scheme   complex boundarry;numerical simulation   
收稿日期: 2012-04-01; 出版日期: 2012-09-30
基金资助:

国家自然科学基金资助项目(11172143)

通讯作者: 薛世峰(1963—),男,河北新河人,教授,博士生导师(xuesf@126.com),主要从事工程力学研究.   
作者简介: 吴卫国(1967—),男,江苏常熟人,博士研究生(wwg1967g@163.com),主要从事环境力学研究.
引用本文:   
吴卫国,薛世峰. 任意曲线坐标系下二维浅水方程的数值模拟[J]. 排灌机械工程学报, 2012, 30(5): 598-602.
WU Wei-Guo,XUE Shi-Feng. Numerical simulation of 2D shallow water equation in arbitrary curvilinear coordinates[J]. Journal of Drainage and Irrigation Machinery Engin, 2012, 30(5): 598-602.
 
[1] Thompson J F, Warsi Z U A, Mastin C W. Boundaryfitted coordinate systems for numerical solution of partial differential equations:A review[J]. Journal of Computational Physics, 1982,47(1):1-108.
[2] Stelling G S. On the construction of computational methods for shallow water flow problems[D]. Delft, the Netherlands: Delft University of Technology,1983.
[3] 王船海,程文辉. 河道二维非恒定流场计算方法研究[J]. 水利学报,1991(1):10-18.
[4] Wang Chuanhai, Cheng Wenhui. The calculation of two dimensional unsteady flow pattern in natural rivers[J]. Journal of Hydraulic Engineering, 1991(1):10-18. (in Chinese)
[5] De Vriend H J. Mathematical model of steady flow in curved shallow channels[J]. Journal of Hydraulic Research, 1977,15(1):37-54.
[6] 王如云, 张东生, 张长宽,等. 曲线坐标网格下二维涌波数值模拟的TVD型格式[J]. 水利学报,2002(10):72-77.
[7] Wang Ruyun, Zhang Dongsheng, Zhang Changkuan, et al. Application of TVD scheme to numerical simulation of 2D surge in curvilinear coordinates[J]. Journal of Hydraulic Engineering, 2002(10):72-77.(in Chinese)
[8] 黄炳彬,方红卫,刘斌. 复杂边界水流数学模型的斜对角笛卡儿方法[J]. 水动力学研究与进展:A辑, 2003,18(6):679-685.
Huang Bingbin,Fang Hongwei, Liu Bin. Diagonal Cartesian method for numerical simulation of flow with complex boundary[J]. Journal of Hydrodynamics: Ser A, 2003,18(6):679-685. (in Chinese)
[9] 吴修广,沈永明,郑永红,等. 非正交曲线坐标下二维水流计算的SIMPLEC算法[J]. 水利学报,2003(2):25-30,37.
[10] Wu Xiuguang, Shen Yongming, Zheng Yonghong, et al. 2D flow SIMPLEC algorithm in nonorthogonal curvilinear coordinates[J]. Journal of Hydraulic Engineering, 2003(2):25-30,37.(in Chinese)
[11] Shi Fengyan, Kirby Js T. Curvilinear parabolic approximation for surface wave transformation with wavecurrent interaction[J]. Journal of Computational Physics Archive, 2005,204(2):562-586.
[1] 王松林, 王玉川, 桂绍波, 高传昌, 曹树良. 液体射流泵内部流动分析:Ⅰ试验与三维数值模拟[J]. 排灌机械工程学报, 2012, 30(6): 655-659.
[2] 施卫东, 王川, 司乔瑞, 徐静, 陆伟刚. 级间间隙对新型井泵性能的影响[J]. 排灌机械工程学报, 2012, 30(6): 627-631.
[3] 成立, Bart P.M. van Esch, 刘超, 周济人, 金燕. 喷水推进混流泵叶片径向力[J]. 排灌机械工程学报, 2012, 30(6): 636-640.
[4] 郑铁刚, 戴会超, 丁全林. 不同突扩比下空间淹没水跃的水力计算[J]. 排灌机械工程学报, 2012, 30(6): 670-676.
[5] 李良超, 曾祥炜, 向科峰, 徐斌, 宋丹路. 梭式止回阀开启过程的数值模拟[J]. 排灌机械工程学报, 2012, 30(6): 710-714.
[6] 施卫东, 龙飞, 张德胜, 冷洪飞, 王国涛. 潜水轴流泵内部固液两相流动的数值模拟[J]. 排灌机械工程学报, 2012, 30(5): 508-512.
[7] 何秀华1, 禚洪彩1, 杨嵩1, 邓志丹2, 李富1. 无阀压电泵用平面锥管内部流动特性[J]. 排灌机械工程学报, 2012, 30(5): 532-537.
[8] 杨从新, 杜媛英, 黎义斌. 导叶参数对混流泵水阻系数及效率的影响[J]. 排灌机械工程学报, 2012, 30(5): 538-542.
[9] 程伟平, 章军军, 陈益民, 高悦. 超短竖井式进/出水口的水力控制[J]. 排灌机械工程学报, 2012, 30(5): 548-552.
[10] 袁建平, 王龙滟, 何志霞, 刘晓凡. 室内置换通风与混合通风的效果对比[J]. 排灌机械工程学报, 2012, 30(5): 563-566.
[11] 赵振宙, 原红红, 郑源, 黄娟, 赵振宁. 直叶片达里厄风轮流场非定常数值计算[J]. 排灌机械工程学报, 2012, 30(5): 567-572.
[12] 袁寿其, 胡博, 陆伟刚, 李彤, 黄志攀. 中比转数离心泵多工况设计[J]. 排灌机械工程学报, 2012, 30(5): 497-502.
[13] 钱忠东, 郜元勇, 谢华, 王志远. 基于CFD技术的双吸式离心泵转轮副叶片优化[J]. 排灌机械工程学报, 2012, 30(5): 503-507.
[14] 成立, 刘超, B.P.M.van Esch, 汤方平, 金燕, 周济人. 灯泡贯流泵装置内部流动及水力特性[J]. 排灌机械工程学报, 2012, 30(4): 436-441.
[15] 袁寿其, 叶丽婷, 张金凤, 袁野, 张伟捷. 分流叶片对离心泵内部非定常流动特性的影响[J]. 排灌机械工程学报, 2012, 30(4): 373-378.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved