排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2012, Vol. 30 Issue (4): 395-400    DOI: 10.3969/j.issn.1674-8530.2012.04.005
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
1 000 MW级核主泵压水室出口压力脉动
朱荣生, 李小龙, 袁寿其, 郑宝义, 付强
(江苏大学流体机械工程技术研究中心, 江苏 镇江 212013)
Collector discharge pressure fluctuation of 1 000 MW nuclear reactor coolant pump
 ZHU  Rong-Sheng, LI  Xiao-Long, YUAN  Shou-Qi, ZHENG  Bao-Yi, FU  Qiang
 全文: PDF (4420 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究压力脉动在核主泵压水室出口处的变化规律及其影响因素,以国内某1 000 MW核电站主泵为研究对象,应用计算流体动力学软件Fluent进行定常与非定常三维数值模拟,得到压水室内部流场特性及计算点的压力脉动情况,并对其进行时域和频域分析.结果表明:回流是引起压水室与出口交接处压力脉动的原因之一;在不同工况下压水室出口及其前后区域内存在明显的压力脉动,偏离额定工况越大,压力脉动波动幅度越大;压水室出口及其前后区域内,上侧的脉动幅度比下侧小,上侧的平均脉动幅度CA在09Q时为1115%,在10Q时为962%,在12Q时为1378%,下侧的平均脉动幅度,在09Q时为1362%,在1.0Q时为1253%,在12Q时为1579%;靠近导叶出口处,泵壳两侧处的脉动幅度要大于靠近出口轴线附近的脉动幅度,远离导叶出口处,泵壳内的脉动幅度从上侧到下侧,逐渐递增;在额定工况时转频是各监测点压力脉动的主要影响因素,在小流量和大流量时转频和叶频是各监测点压力脉动的主要影响因素.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱荣生
李小龙
袁寿其
郑宝义
付强
关键词核主泵   压水室出口   压力脉动   数值模拟   时域分析   频域分析     
Abstract: To investigate the collector discharge pressure fluctuation characteristics and the related factors in a 1 000 MW nuclear reactor coolant pump, steady and unsteady 3dimensional numerical simulation was conducted to depict the inner flow inherence and detailed pressure content of a domestic pump model. Both time and frequency domain analysis were further put forward. It is shown that reverse flow is one of the reasons that cause the pressure fluctuations at the joint of the collector and the discharge. Obvious pressure fluctuations exit at the collector discharge and the adjacent area. In addition, the more the operation condition deviates from the design point, the more severe the pressure fluctuations are. The fluctuation amplitude in the upper passage is higher than that in the lower passage. The mean amplitude are 11.5%, 9.62% and 13.78% respectively in the upper passage, while they are 13.62%, 12.53% and 15.79% respectively in the lower one under the flow rates of 0.9Q, 1.0Q, and 1.2Q. At the adjacent diffuser vanes, the fluctuation amplitude near both sides of the casing wall is larger than that near the midspan line. In the regions far from the diffuser outlet, the fluctuation amplitude is increased gradually from the top side wall of casing to the bottom one. The shaft rotating frequency is the major factor influencing pressure fluctuation at ever monitor point when the pump is working at the design point. However, both the shaft rotating frequency and the blade passing frequency  are the main factors when it works at offdesign points.
Key wordsnuclear reactor coolant pump   discharge chamber outlet   pressure fluctuation   numerical simulation   timedomain analysis   frequencydomain analysis   
收稿日期: 2011-04-21; 出版日期: 2012-07-30
通讯作者: 李小龙(1984—),男,山东枣庄人,硕士研究生(long1413happy@sina.com),主要从事流体机械及工程研究.   
引用本文:   
朱荣生,李小龙,袁寿其等. 1 000 MW级核主泵压水室出口压力脉动[J]. 排灌机械工程学报, 2012, 30(4): 395-400.
ZHU Rong-Sheng,LI Xiao-Long,YUAN Shou-Qi et al. Collector discharge pressure fluctuation of 1 000 MW nuclear reactor coolant pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2012, 30(4): 395-400.
 
[1] Rzentkowski G, Zbroja S. Acoustic characterization of a CANDU primary heat transport pump at the bladepassing frequency[J]. Nuclear Engineering Design, 2000, 196(1): 63-68.
[2] In Soo Koo, Whan Woo Kim. The development of reactor coolant pump vibration monitoring and a diagnostic system in the nuclear power plant [J]. ISA Transactions, 2000,39(3): 309-316.
[3] Kazem Farhadi, Anis Bousbiasalah, Fransceso D Auria. A model for the analysis of pump startup transients in Tehran research reactor[J]. Progress in Nuclear Energy, 2007, 49(7):499-510.
[4] Martin W Trethewey, Joshua C Friell. A spectral simulation approach to evaluate probabilistic measurement precision of a reactor coolant pump torsional vibration shaft crack monitoring system[J].Journal of Sound and Vibration, 2008, 310(4/5):1036-1056.
[5] 马辉,周文建,闻邦椿. 核电站反应堆冷却剂泵的模态分析[J]. 机械制造,2006(10):14-17.
[6] Ma Hui, Zhou Wenjian, Wen Bangchun. Mode analusis of reactor coolant pump for nuclear power station.[J]. Machinery, 2006 (10):14-17.(in Chinese)
[7] 陈向阳,袁丹青, 杨敏官,等. 300 MW级核电站主泵压力脉动研究[J]. 核动力工程,2010,31(3): 78-82.
Chen Xiangyang, Yuan Danqing, Yang Minguan, et al. Study on pressure fluctuation in main pump of 300 MW nuclear power plants[J]. Nuclear Power Engineering, 2010,31(3): 78-82. (in Chinese)
[8] Muggli F A. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow[C]∥Proceedings of the ASME Fluids Engineering Division Summer Meeting,2003:249-254.
[9] Untaroiu A, Throckmorton A L, Patel S M, et al. Numerical and experimental analysis of an axial flow left ventricular assist device:The influence of the diffuser on overall pump performance [J]. Artificial Organs, 2005,29(7):581-591.
[10] 唐红芬, 张梁,吴玉林. 双级轴流泵内部三维紊动流场CFD分析[J]. 工程热物理学报,2003,24(3):423-425.
Tang Hongfen, Zhang Liang, Wu Yulin. Three dimensional numerical simulation of flow field inside a twostage axial pump[J]. Journal of Engineering Thermophysicl,2003, 24(3): 423-425. (in Chinese)
[11] 李颖, 周文霞, 张继革, 等. 核反应堆冷却剂循环泵全流道三维数值模拟及性能预估[J]. 原子能科学技术, 2009,43 (10):898-902.
Li Ying, Zhou Wenxia, Zhang Jige, et al. Numerical simulation of threedimensional flow through full passage and performance prediction of nuclear reactor coolant pump[J].Atomic Energy Science and Technology,2009,43(10):898-902.(in Chinese)
[1] 叶晓琰, 田莹莹, 丁亚娜, 沈良滨, 朱利凯. 高剪切匀浆泵两相流动的数值模拟[J]. 排灌机械工程学报, 2012, 30(4): 407-411.
[2] 袁寿其, 叶丽婷, 张金凤, 袁野, 张伟捷. 分流叶片对离心泵内部非定常流动特性的影响[J]. 排灌机械工程学报, 2012, 30(4): 373-378.
[3] 成立, 刘超, B.P.M.van Esch, 汤方平, 金燕, 周济人. 灯泡贯流泵装置内部流动及水力特性[J]. 排灌机械工程学报, 2012, 30(4): 436-441.
[4] 董亮, 刘厚林, 谈明高, 王凯, 王勇. 离心泵全流场与非全流场数值计算[J]. 排灌机械工程学报, 2012, 30(3): 274-278.
[5] 李树勋1,2, 徐登伟1, 李确1, 王朝富1. 倒吊桶先导式蒸汽疏水阀的设计与数值模拟[J]. 排灌机械工程学报, 2012, 30(3): 346-350.
[6] 施卫东1, 张磊1, 陈斌2, 蒋婷1, 张华1. 离心泵间隙对压力脉动及径向力的影响[J]. 排灌机械工程学报, 2012, 30(3): 260-264.
[7] 崔宝玲1, 黄达钢1, 史佩琦1, 金庆明2. 叶顶间隙对低比转数半开式离心泵性能的影响[J]. 排灌机械工程学报, 2012, 30(3): 283-288.
[8] 程效锐, 李仁年, 黎义斌, 范赢, 申立新. 螺旋离心泵叶片变螺距型线方程[J]. 排灌机械工程学报, 2012, 30(3): 289-294.
[9] 邴浩, 曹树良, 谭磊, 陆力. 混流泵导叶对其性能的影响[J]. 排灌机械工程学报, 2012, 30(2): 125-130.
[10] 常书平, 王永生. 基于CFD的混流泵空化特性研究[J]. 排灌机械工程学报, 2012, 30(2): 171-175.
[11] 袁建平, 金荣, 陈红亮, 付燕霞, 孙威. 离心泵用赫姆霍兹水消声器声学特性数值模拟[J]. 排灌机械工程学报, 2012, 30(2): 141-146.
[12] 何秀华, 李富, 毕雨时, 邓志丹, 王健. 单振子双腔体V形管无阀压电泵的流场分析[J]. 排灌机械工程学报, 2012, 30(2): 153-156.
[13] 张德胜, 施卫东, 王川, 王国涛, 邹萍萍. 斜流泵叶轮和导叶叶片数对压力脉动的影响[J]. 排灌机械工程学报, 2012, 30(2): 167-170.
[14] 杨敏官, 尹必行, 康灿, 孙鑫恺, 车占富. 绕水翼非定常空化流场数值模拟[J]. 排灌机械工程学报, 2012, 30(2): 192-197.
[15] 汤跃, 汤玲迪, 刘二会. 闸阀调节过程的三维模拟及其动态模型[J]. 排灌机械工程学报, 2012, 30(2): 219-224.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved