排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2012, Vol. 30 Issue (2): 181-187    DOI: 10.3969/j.issn.1674-8530.2012.02.012
水利水电工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
典型断面渠道临界水深计算
刘计良1, 王正中1, 苏德慧2, 杨晓松1, 刘铨鸿1
(1.西北农林科技大学水利水电工程研究所, 陕西 杨凌 712100; 2.蒙特卡罗水利工程公司, 美国 得克萨斯州 休斯敦 77067)
Calculation of water critical depth in channels with common shapes
Liu Jiliang1, Wang Zhengzhong1, Su Dehui2, Yang Xiaosong1, Liu Quanhong1
(1.Institute of Water Resources and Hydropower Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China; 2.Montgomery & Barnes, Inc., Houston, Texas 77067, USA)
 全文: PDF (1615 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 系统总结了明渠特征水深研究领域的计算方法,评价了各方法的特点;为了优选出典型断面渠道临界水深简捷、通用、精度高、适用范围广的显式计算公式,通过定义包含典型断面几何要素及流量的量纲为一的参数,将目前成果中临界水深的显式计算公式用定义量纲为一的参数进行统一表达,并对其进行简捷性、精度及适用范围的综合评价比较,优选出梯形、圆形、弧底梯形、普通城门洞形、马蹄形等5种典型断面渠道临界水深的显式计算公式;对标准城门洞形断面的临界水深应用最优一致逼近原理,提出以幂函数形式分段表达的新显式计算公式.误差分析表明,在工程常用范围内,由推荐的显式公式所计算的6种典型断面的临界水深,其最大相对误差均小于1%,满足工程设计对精度的要求.该研究可为典型断面排灌渠道的设计及水力计算提供参考.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘计良
王正中
苏德慧
杨晓松
刘铨鸿
关键词排灌渠道   断面形式   特征水深   临界水深   相对误差   显式公式     
Abstract: The existing methods for calculating critical depths of open channels were summarized and their characters have been clarified.  In order to identify simple, universal, accurate explicit equations for calculating the critical depth in open channels with typical crosssections, two dimensionless variables related to channel crosssection geometry and discharge were defined. Then, those explicit equations available for five sorts of open channels with typical crosssections in literature were expressed by the dimensionless variables, thus the most appropriate ones could be selected by comparing their complexity, accuracy and application range. Also, by applying the best approximations algorithm, a new explicit equation expressed as a series of piecewise power functions was developed for the openchannel with standard citygate crosssection. For the new equations, the results of error analyses indicate that all the maximum relative errors in critical depth are less than 1% in the channel normal application range. The results of the study may provide a reference for the design and hydraulic calculations of typical open channels applied in drainage and irrigation.
Key wordschannels for drainage and irrigation   channel shapes   characteristic depths;critical depth   relative error   explicit equations   
收稿日期: 2011-10-31; 出版日期: 2012-03-30
基金资助:

国家自然科学基金资助项目(51179164); 陕西省农业科技创新项目(2011NXC01-20); 陕西省水利科技项目(2011-03)

通讯作者: 王正中(1963—), 男, 陕西彬县人, 教授, 博士生导师(通信作者,wangzz0910@163.com), 主要从事水工结构工程及工程水力学研究.   
作者简介: 刘计良(1984—), 男, 山东邹城人, 博士研究生(liujiliang430@163.com), 主要从事水工结构及工程水力学研究.
引用本文:   
刘计良,王正中,苏德慧等. 典型断面渠道临界水深计算[J]. 排灌机械工程学报, 2012, 30(2): 181-187.
LIU Ji-Liang,WANG Zheng-Zhong,SU De-Hui et al. Calculation of water critical depth in channels with common shapes[J]. Journal of Drainage and Irrigation Machinery Engin, 2012, 30(2): 181-187.
 
[1] 参考文献(References)
[2] Wang Zhengzhong. Formula for calculating critical depth of trapezoidal open channel[J]. Journal of Hydraulic Engineering, 1998, 124(1):90-91.
[3] 赵延风,王正中,方兴,等. 半立方抛物线形渠道正常水深算法[J]. 排灌机械工程学报, 2011, 29(3): 241-245.
Zhao Yanfeng, Wang Zhengzhong, Fang Xing, et al. Calculation method for normal depth of semicubic parabolic channels[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(3): 241-245.(in Chinese)
[4] Patil R G, Murthy J S R, Ghosh L K. Uniform and critical flow computations[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(4):375-378.
[5] Kanani A, Bakhtiari M, Borghei S M, et al. Evolutionary algorithms for the determination of critical depths in conduits[J]. Journal of Irrigation and Drainage Engineering, 2008, 134(6):847-852.
[6] 吕宏兴.马蹄形过水断面临界水深的迭代计算[J]. 长江科学院院报, 2002, 19(3): 10-12.
Lü Hongxing. Calculation on critical depth of horseshoe cross section by iterative method[J]. Journal of Yangtze River Scientific Research Institute, 2002, 19(3): 10-12.(in Chinese)
[7] 张宽地,王光谦,吕宏兴,等. 基于改进粒子群算法求解马蹄形断面正常水深[J]. 排灌机械工程学报, 2011,29(1): 54-60.
Zhang Kuandi, Wang Guangqian, Lü Hongxing, et al. Applying particle swam optimization algorithm on normal depth calculation of horseshoe section tunnel[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(1): 54-60.(in Chinese)
[8] 王正中,陈涛,芦琴,等.马蹄形断面隧洞临界水深的直接计算[J]. 水力发电学报, 2005, 24(5): 95-98.
Wang Zhengzhong, Chen Tao, Lu Qin, et al. The direct solution on critical depth of horseshoe section tunnel[J]. Journal of Hydroelectric Engineering, 2005, 24(5):95-98. (in Chinese)
[9] Merkley G P. Standard horseshoe cross section geometry[J]. Agricultural Water Management, 2005, 71(1): 61-70.
[10] Liu Jiliang, Wang Zhengzhong, Fang Xing. Formulas for computing geometry and critical depth of general horseshoe tunnel[J]. Transactions of the ASABE, 2010, 53(4):1159-1164.
[11] Swamee P K. Critical depth equations for irrigation canals[J]. Journal of Irrigation and Drainage Engineering, 1993, 119(2):400-409.
[12] 王正中,袁驷,武成烈. 再论梯形明渠临界水深计算法[J]. 水利学报,1999(4): 14-17.
[13] Wang Zhengzhong, Yuan Si, Wu Chenglie. A final inquiry on a formula for calculating critical depth of open channel with trapezoidal cross section[J].Journal of Hydraulic Engineering, 1999(4):14-17.(in Chinese)
[14] 廖云凤. 梯形断面渠道临界水深显式计算[J]. 陕西水力发电, 2001,17(4): 22-23.
Liao Yunfeng. Direct calculation formula of critical depth for trapezoidal canal[J]. Journal of Shaanxi Water Power, 2001,17(4):22-23.(in Chinese)
[15] Vantankhah A R, Kouchakzadeh S. Discussion of “Exact equations for critical depth in a trapezoidal canal”[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(5): 508.
[16] Vatankhah A R, Easa S M. Explicit solutions for critical and normal depths in channels with different shapes[J]. Flow Measurement and Instrumentation, 2011, 22(1): 43-49.
[17] 苏鲁平. 梯形明渠临界水深解法综述[J]. 人民长江, 1995, 26(5):39-41.
Su Luping. Commentary on solutions for critical depth in a trapezoidal channel[J]. Yangtze River, 1995, 26(5):39-41.(in Chinese)
[18] Swamee P K, Rathie P N. Exact equations for critical depth in a trapezoidal canal[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(5): 474-476.
[19] 王正中,陈涛,万斌,等. 圆形断面临界水深的新近似计算公式[J]. 长江科学院院报, 2004,21(2):1-2.
Wang Zhengzhong, Chen Tao, Wan Bin, et al. A new approximate formula to critical depth of round section canal[J]. Journal of Yangtze River Scientific Research Institute, 2004,21(2):1-2.(in Chinese)
[20] 赵延风,宋松柏,李宇. 圆形断面临界水深的近似计算公式[J]. 水利水电科技进展, 2008,28(2):62-64.
Zhao Yanfeng, Song Songbai, Li Yu. Approximate formula for calculating the critical water depth at circular cross section[J]. Advances in Science and Technology of Water Resources, 2008,28(2):62-64.(in Chinese)
[21] Vatankhah A R, Bijankhan M. Chokefree flow in circular and ovoidal channels[J]. Water Management, 2010, 163(4): 207-215.
[22] 王正中,申永康,彭元平,等. 弧底梯形明渠临界水深的直接算法[J]. 长江科学院院报, 2005,22(3):6-8.
Wang Zhengzhong, Shen Yongkang, Peng Yuanping, et al. Direct formula calculating critical depth for open trapezoidal channel with spherical bed[J]. Journal of Yangtze River Scientific Research Institute, 2005,22(3):6-8.(in Chinese)
[23] 王正中,陈涛,张新民,等. 城门洞形断面隧洞临界水深度的近似算法[J]. 清华大学学报:自然科学版, 2004,44(6):812-814.
Wang Zhengzhong, Chen Tao, Zhang Xinmin, et al. Approximate solution for the critical depth of an arched tunnel[J]. Journal of Tsinghua University: Sci & Tech, 2004,44(6):812-814.(in Chinese)
[24] 赵延风,宋松柏,孟秦倩. 普通城门洞形断面临界水深的近似计算方法[J]. 长江科学院院报, 2008,25(4):14-15.
Zhao Yanfeng, Song Songbai, Meng Qinqian. Approximate method calculating critical water depth in common cityopening shaped crosssection[J]. Journal of Yangtze River Scientific Research Institute, 2008,25(4):14-15.(in Chinese)
[25] 张宽地,王光谦,吕宏兴,等. 明流条件下城门洞形隧洞临界水深的直接计算法[J]. 四川大学学报:工程科学版, 2010,42(3):101-106.
Zhang Kuaidi, Wang Guangqian, Lü Hongxing, et al. A direct method for calculating the critical depth of an arched section tunnel[J]. Journal of Sichuan University: Engineering Science Edition, 2010,42(3):101-106.(in Chinese)
[1] 刘计良1, 王正中1, 苏德慧2, 杨晓松1, 刘铨鸿1. 典型断面渠道正常水深计算[J]. 排灌机械工程学报, 2012, 30(3): 324-329.
[2] 章少辉, 许迪, 李益农, 白美健. 二维撒施畦灌地表水流溶质运移模型:Ⅱ验证[J]. 排灌机械工程学报, 2012, 30(2): 231-236.
[3] 赵延风, 王正中,方兴, 刘计良, 洪安宇. 半立方抛物线形渠道正常水深算法[J]. 排灌机械工程学报, 2011, 29(3): 241-245.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved