排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (8): 730-736    DOI: 10.3969/j.issn.1674-8530.19.0018
排灌装备制造技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
激光喷丸IN718镍基合金的高温晶粒演变规律及析出相分析
黄舒,刘牧熙,胡晓奇,李红宇,胡磊
江苏大学机械工程学院, 江苏 镇江 212013
Analysis of grain evolution and precipitated phase in IN718 alloy objected to laser peening at elevated temperature
HUANG Shu, LIU Muxi, HU Xiaoqi, LI Hongyu, HU Lei
School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (6803 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究激光喷丸IN718镍基合金的高温晶粒演变规律及其高温析出相,开展了不同功率密度的激光喷丸强化试验,并对激光喷丸试样进行高温保持试验,对比分析了不同温度和激光功率密度作用下试样的显微硬度.此外,通过扫描电子显微镜(SEM)观测了试样的晶粒形貌,并采用能谱仪(EDS)对IN718合金的高温析出相进行分析.研究结果表明,高温保持冷却后试样的显微硬度值高于常温,且在700 ℃下激光喷丸试样表层显微硬度(HV)最高达到348;激光喷丸试样晶粒尺寸由原始的45 μm减小到20~30 μm,而在高温保持后晶粒尺寸增长到35 μm左右;随着温度上升,IN718材料内部δ析出相逐渐增多,同时伴有TiN析出.最终,根据高温环境下晶粒演变规律和析出相分析,提出了激光喷丸IN718合金的高温强化机制.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄舒
刘牧熙
胡晓奇
李红宇
胡磊
关键词IN718合金   激光喷丸   高温   晶粒演变   析出相     
Abstract: In order to study the grain evolution and precipitation phase of IN718 alloy treated by laser peening(LP)holding at elevated temperature, the LP experiment of different power density and high-temperature holding test were carried out. The microhardness of the samples at different temperatures and laser power density was analyzed. In addition, the grain morphology of the samples was observed by Scanning Electron Microscope(SEM), and the high-temperature precipitated phase of IN718 alloy was analyzed by Energy Dispersive Spectrometer(EDS). The results show that the microhardness of the LPed samples is higher than that of untreated samples, and the microhardness of the LPed samples is reached the maximum at 700 ℃, which is 348. The grain size of the LPed samples is reduced from the original 45 μm to 20-30 μm, and increased to 35 μm after the high-temperature hol-ding test. As the temperature rose, the δ precipitated phase in the IN718 material increased gradually, and the precipitated phase of TiN was observed. Finally, according to the grain evolution law and precipitated phase analysis at elevated temperature, the high-temperature strengthening mechanism of the LPed IN718 alloy was proposed.
Key wordsIN718 alloy   laser peening   high-temperature   grain evolution   precipitated phase   
收稿日期: 2019-02-22;
基金资助:国家自然科学基金资助项目(51775252,51405204);中国博士后科学基金资助项目(2018M630526);江苏省第十五批“六大人才高峰”高层次人才选拔培养资助项目(GDZB-050);江苏省大型工程装备检测与控制重点建设实验室开放课题(JSKLEDC201503);江苏大学“青年骨干教师培养工程”资助项目(2016016)
引用本文:   
黄舒,刘牧熙,胡晓奇等. 激光喷丸IN718镍基合金的高温晶粒演变规律及析出相分析[J]. 排灌机械工程学报, 2019, 37(8): 730-736.
HUANG Shu,LIU Mu-Xi,HU Xiao-Qi et al. Analysis of grain evolution and precipitated phase in IN718 alloy objected to laser peening at elevated temperature[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(8): 730-736.
 
[1] REED R C. The superalloys fundamentals and applications [M]. Cambridge: Cambridge University Press, 2006: 217.
[2] SCHAFRIK R E, WARD D D, GROH J R. Application of Alloy 718 in GE aircraft engines: past, present and next five years[J]. Superalloys, 2001, 706: 625-706.
[3] NÉMETH A A N, CRUDDEN D J, ARMSTRONG D E J, et al. Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy[J]. Acta materialia, 2017, 126: 361-371.
[4] JIANG R, REED P A S. Critical assessment 21: oxygen-assisted fatigue crack propagation in turbine disc supe-ralloys[J]. Materials science & technology, 2016, 32(5): 401-406.
[5] KALAINATHAN S, PRABHAKARAN S. Recent deve-lopment and future perspectives of low energy laser shock peening[J]. Optics & laser technology, 2016, 81: 137-144.
[6] CHEN L, REN X, ZHOU W, et al. Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening[J]. Materials science and engineering: A, 2018, 728: 20-29.
[7] LU Q, SU Q, WANG F, et al. Influence of laser shock peening on irradiation defects in austenitic stainless steels[J]. Journal of nuclear materials, 2017, 489: 203-210.
[8] SCHLESINGER M, SEIFERT T, PREUSSNER J. Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction[J]. International journal of fatigue, 2017, 99: 242-249.
[9] KUO Y L, HORIKAWA S, KAKEHI K. The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing[J]. Materials & design, 2017, 116: 411-418.
[10] GILL A S, TELANG A, VASUDEVAN V K. Characte-ristics of surface layers formed on inconel 718 by laser shock peening with and without a protective coating[J]. Journal of materials processing technology, 2015, 225: 463-472.
[11] XU S Q, HUANG S, MENG X K, et al. Thermal evolution of residual stress in IN718 alloy subjected to laser peening[J]. Optics & lasers in engineering, 2017, 94: 70-75.
[12] ABHISHEK T, AMRINDER S G, SEETHA R M, et al. Effect of temperature on microstructure and residual stresses induced by surface treatments in Inconel 718 SPF[J]. Surface & coatings technology, 2018, 344: 93-101.
[13] 黄舒, 盛杰, 周建忠,等. IN718镍基合金激光喷丸微观组织特性及其高温稳定性[J].稀有金属材料与工程, 2016, 45(12): 252-257.
HUANG S, SHENG J, ZHOU J Z, et al. Microstructure characteristics and high-temperature performance of laser peened IN718 nickel-based alloy[J]. Rare metal materials and engineering, 2016, 45(12): 252-257.(in Chinese)
[14] 章海峰, 黄舒, 盛杰,等. 激光喷丸IN718镍基合金残余应力高温松弛及晶粒演变特征[J]. 中国激光, 2016, 43(2): 100-108.
ZHANG H F, HUANG S, SHENG J, et al. Thermal relaxation of residual stress and grain evolution in laser peening IN718 alloy[J]. Chinese journal of lasers, 2016, 43(2): 100-108.(in Chinese)
[15] KALENTICS N, HUANG K. Laser shock peening: A promising tool for tailoring metallic microstructures in selective laser melting[J]. Journal of materials processing technology, 2019, 266: 612-618.
[16] DU J X, LYV X D, DENG Q, et al. Effect of solution treatment on the microstructure and mechanical pro-perties of IN718 alloy[J]. Rare metal materials and engineering, 2017, 46(9): 2359-2365.
[17] 张京玲. δ相对GH4169合金的组织演化和性能影响[D].天津:天津大学,2017.
[1] 王明杨,王晓放*,周路圣,何曦,辛建池. 边界效应及高温高压对核主泵模态的影响[J]. 排灌机械工程学报, 2019, 37(6): 668-672.
[2] 曹卫东, 王秀兰, 胡啟祥. 基于热固耦合的高温热水泵口环形变分析[J]. 排灌机械工程学报, 2013, 31(10): 841-845.
[3] 胡敬宁, 刘三华, 江 伟, 黄铭科, 张 丽. 基于CFD的高温减压塔底泵次级叶轮优化设计[J]. 排灌机械工程学报, 2010, 28(2): 127-131.
[4] HE Yu-jie;李质情;SHI Hai-xia;李强. 动压机械密封动力槽的优化及换热器面积的确定[J]. 排灌机械工程学报, 2008, 26(3): 30-33.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved