排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (8): 724-729    DOI: 10.3969/j.issn.1674-8530.18.0195
农业水土工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
压力与表面活性剂对循环曝气氧传质特性的影响
王莹1,雷宏军2,胡兴骥1,张振华1*
1. 鲁东大学资源与环境工程学院, 山东 烟台 264025;2. 华北水利水电大学水利学院, 河南 郑州 450045
Impact of pressure and surfactant on oxygen mass transfer characteristics under cycle aeration
WANG Ying1,LEI Hongjun2,HU Xingji1,ZHANG Zhenhua1*
1. School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264025, China; 2. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China
 全文: PDF (1726 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用水肥气耦合自动灌溉设备进行曝气,研究工作压力(0.05,0.10和0.15 MPa)和表面活性剂十二烷基硫酸钠(SDS;0,5,10和15 mg/L)2因素12个组合条件对循环曝气过程中溶解氧及氧传质系数的影响.结果表明:在循环曝气中,饱和溶解氧随着工作压力的提高显著提升36%以上(P<0.05);与清水条件相比,活性剂的添加显著提高了饱和溶解氧值(P<0.05),提升的最大值为22.82%.工作压力的升高对氧传质系数的提高均在17%以上,活性剂浓度的升高对氧传质系数的提高均在52%以上.综合曝气过程中溶解氧及氧传质系数,0.15 MPa的工作压力和5 mg/L的活性剂添加浓度是适宜的曝气组合.研究结果可为曝气参数的优化提供理论支持.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王莹
雷宏军
胡兴骥
张振华*
关键词循环曝气   压力   饱和溶解氧   氧传质系数   活性剂     
Abstract: The effects of the working pressure(0.05, 0.10 and 0.15 MPa)and the surfactant twelve alkyl sulfate(SDS; 0, 5, 10 and 15 mg/L)on the mass transfer coefficient of dissolved oxygen and oxygen in the process of cyclic aeration were studied by using the water and gas coupled automatic irrigation equipment. The results showed that in the cycle aeration, the saturation dissolved oxygen increased by more than 36%(P<0.05)with the increase of working pressure, and the addition of active agent significantly increased the saturation dissolved oxygen(P<0.05), and the maximum value of the lifting was 22.82% compared with the water condition. The increase of the working pressure on the mass transfer coefficient of oxygen is more than 17%, and the increase of the concentration of active agent on the mass transfer coefficient of oxygen is above 52%. Considering the dissolved oxygen and oxygen mass transfer coefficient in aeration process, the working pressure of 0.15 MPa and the concentration of 5 mg/L activator are suitable aeration combination. The results can provide theoretical support for the optimization of aeration parameters.
Key wordscycle aeration   pressure   saturation dissolved oxygen   oxygen mass transfer coefficient   surfactant   
收稿日期: 2018-09-14;
基金资助:国家自然科学基金资助项目(41771256)第一作者简介:王莹(1994—),女,山东龙口人,硕士研究生(389956339@qqcom),主要从事节水灌溉和土壤物理研究
引用本文:   
王莹,雷宏军,胡兴骥等. 压力与表面活性剂对循环曝气氧传质特性的影响[J]. 排灌机械工程学报, 2019, 37(8): 724-729.
WANG Ying-,LEI Hong-Jun-,HU Xing-Ji- et al. Impact of pressure and surfactant on oxygen mass transfer characteristics under cycle aeration[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(8): 724-729.
 
[1] NIU Wenquan, GUO Qing, ZHOU Xiaobo, et al. Effect of aeration and soil water redistribution on the air permea-bility under subsurface drip irrigation[J]. Soil science society of America journal, 2012, 76(3):815-820.
[2] 雷宏军,冯凯,张振华,等. 河南3种典型土壤曝气滴灌草莓生长与品质[J]. 排灌机械工程学报, 2017, 35(2): 158-164. 浏览
LEI Hongjun, FENG Kai, ZHANG Zhenhua, et al. Growth and quality of potted strawberry under aerated drip irrigation in the three typical soils in Henan Province[J]. Journal of drainage and irrigation machi-nery engineering, 2017, 35(2): 158-164.(in Chinese)
[3] PENDERGAST L, BHATTARAI S P, MIDMORE D J. Benefits of oxygation of subsurface drip irrigation water for cotton in a Vertosol[J]. Crop & pasture science, 2013, 64(11/12):1171-1181.
[4] ABUARAB M, MOSTAFA E, IBRAHIM M. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil[J]. Journal of advanced research, 2013, 4(6):493-499.
[5] 陈慧, 侯会静, 蔡焕杰,等. 加气灌溉温室番茄地土壤N2O排放特征[J]. 农业工程学报, 2016,32(3):111-117.
CHEN Hui, HOU Huijing, CAI Huanjie, et al. Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation [J]. Transactions of the CSAE, 2016, 32(3):111-117.(in Chinese)
[6] GOORAHOO D, CARSTENSEN G, ZOLDOSKE D, et al. Using air in subsurface drip irrigation(SDI)to increase yields in bell pepper[J]. International wotter and irrigation 2002, 22(2):39-42.
[7] BHATTARAI S P, BALSYS R J, WASSINK D, et al. The total air budget in oxygenated water flowing in a drip tape irrigation pipe[J]. International journal of multiphase flow, 2013, 52(6):121-130.
[8] ROSSO D, HUO D L, STENSTROM M K. Effects of interfacial surfactant contamination on bubble gas transfer[J]. Chemical engineering science, 2006, 61(16):5500-5514.
[9] CHEN Xulu, LIU Guohua, FAN Haitao, et al. Effects of surfactant contamination on oxygen mass transfer in fine bubble aeration process[J]. Korean journal of chemical engineering, 2013, 30(9):1741-1746.
[10] CHERN J M, CHOU S R, SHANG C S. Effects of impurities on oxygen transfer rates in diffused aeration systems[J]. Water research, 2001, 35(13):3041-3048.
[11] ROZENBLIT R, GUREVICH M, LENGEL Y, et al. Flow patterns and heat transfer in vertical upward air water flow with surfactant[J]. International journal of multiphase flow, 2006, 32(8): 889- 901.
[12] 吴灿, 李华斌, 牛忠晓,等. 压力对泡沫驱封堵能力及气泡大小的影响[J]. 中外能源, 2013, 18(11):55-57.
WU Can,LI Huabin,NIU Zhongxiao,et al. The influence of pressure on plugging capacity and bubble size of the air foaming[J]. Sino-global energy,2013,18(11):55-57.(in Chinese)
[13] 雷宏军, 臧明, 张振华,等. 循环曝气压力与活性剂浓度对滴灌带水气传输的影响[J]. 农业工程学报, 2014, 30(22):63-69.
LEI Hongjun, ZANG Ming, ZHANG Zhenhua, et al. Impact of working pressure and surfactant concentration on air water transmission in drip irrigation tape under cycle aeration [J]. Transactions of the CSAE, 2014, 30(22):63-69.(in Chinese)
[14] 陈旭露,王洪臣,齐鲁,等. 阴离子表面活性剂对微孔曝气氧传质过程影响的研究[J]. 环境科学学报,2013,33(2):395-400.
CHEN Xulu, WANG Hongchen, QI Lu, et al. Effects of anionic surfactant on oxygen mass transfer in the fine bubble aeration[J]. Acta scientiae circumstantiae, 2013,33(2):395-400.(in Chinese)
[15] 刘春, 张磊, 杨景亮,等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010, 4(3): 585-589.
LIU Chun, ZHANG Lei, YANG Jingliang, et al. Cha-racteristics of oxygen transfer in microbubble aeration [J]. Chinese journal of environmental engineering, 2010, 4(3): 585-589.(in Chinese)
[16] AND J M C, YU C F. Oxygen transfer modeling of diffused aeration systems[J]. Industrial & engineering chemistry research, 1997, 36(12): 5447-5453.
[17] STENSTROM M K, GILBERT R G. Effects of alpha, beta and theta factor upon the design, specification and operation of aeration systems[J]. Water research, 1981, 15(6): 643-654.
[18] 李景明, 樊玉光. 压力水中典型气体溶解特性与计算方法研究[J]. 应用能源技术, 2016(9):1-3.
[19] LI Jingming, FAN Yuguang. Research on solving cha-racter and calculating method of typical gas in pressurized water[J]. Application of energy technology, 2016(9):1-3.(in Chinese)
[20] 时玉龙, 王三反, 武广,等. 加压溶气气浮微气泡产生机理及工程应用研究[J]. 工业水处理, 2012, 32(2):20-23.
SHI Yulong, WANG Sanfan, WU Guang, et al. Study on the mechanism of the microbubble formation of pressure dissolved air flotation and application[J]. Industrial water treatment, 2012, 32(2):20-23.(in Chinese)
[21] 张朝能. 水体中饱和溶解氧的求算方法探讨[J]. 环境科学研究,1999,12(2):54-55.
ZHANG Chaoneng. Study on calculation method of saturation values of dissolved oxygen in waters[J]. Research of environmental sciences, 1999,12(2):54-55.(in Chinese)
[22] 程香菊, 谢骏,余德光,等. 曝气增氧微气泡-水界面和水体表面的氧传质的计算分析[J]. 农业工程学报, 2013, 29(13):190-199.
CHENG Xiangju, XIE Jun, YU Deguang, et al. Calculated analysis of oxygen transfer from air bubble water interface and turbulent water surface in microporous aera-tion systems [J]. Transactions of the CSAE, 2013, 29(13):190-199.(in Chinese)
[23] 程香菊, 谢宇宁, 朱丹彤,等. 基于气泡理论分析表面活性剂对微孔曝气增氧性能的影响[J]. 工程科学与技术, 2017, 49(5):28-34.
CHENG Xiangju, XIE Yuning, ZHU Dantong, et al. Effect of surfactants on the microporous aeration oxyge-nation performance based on air bubble theory[J]. Advanced engineering sciences, 2017, 49(5):28-34.(in Chinese)
[24] CHERN J M, CHOU S R, SHANG C S. Effects of impurities on oxygen transfer rates in diffused aeration systems[J]. Water research, 2001, 35(13):3041-3048.
[1] 柴立平,俞嘉枫*,李跃,燕浩,曹林松. 基于不等距叶片的串并联泵压力脉动[J]. 排灌机械工程学报, 2019, 37(9): 752-757.
[2] 李伟,*,平元峰,,施卫东,季磊磊,,李恩达,,马凌凌,. 导叶式混流泵旋转失速的研究进展[J]. 排灌机械工程学报, 2019, 37(9): 737-745.
[3] 宋煜,顾希尧,刘迎圆,尹俊连,王德忠*. 不同数值计算方法对核主泵压力脉动性能的数值模拟[J]. 排灌机械工程学报, 2019, 37(8): 645-649.
[4] 李强*,李森,燕浩,王道明,夏胜生. 叶片进口边对微型高速离心泵性能的影响[J]. 排灌机械工程学报, 2019, 37(7): 587-592.
[5] 庞庆龙,蒋小平*,朱嘉炜,吴国桥,王鑫伟,王莉. 泵腔径向间隙对多级离心泵泵腔内部流场的影响[J]. 排灌机械工程学报, 2019, 37(7): 580-586.
[6] 赵伟国,,潘绪伟,*,宋启策,,李尚升,. 叶片进口边穿孔对离心泵空化性能的影响[J]. 排灌机械工程学报, 2019, 37(6): 461-468.
[7] 周颖,郑源*,何中伟,孙奥冉,张付林,汪昊蓝. 大型轴流泵反向发电压力脉动及流固耦合[J]. 排灌机械工程学报, 2019, 37(6): 480-485.
[8] 边若鹏,昝丙合,朱建勇*,何淼. 侧风对螺旋桨气动特性影响的数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 435-440.
[9] 黄凯乐,袁建平,司乔瑞,林刚. 多级离心泵多工况内部压力脉动数值计算[J]. 排灌机械工程学报, 2019, 37(5): 387-392.
[10] 李伟*, 张扬, 孙兵, 施卫东, 许荣军. 不同工况下混流泵转子径向力及压力脉动[J]. 排灌机械工程学报, 2019, 37(4): 277-283.
[11] 余昊谦*,王洋,韩亚文,胡日新,汤海涛,汪群. 旋涡自吸泵流致噪声模拟及降噪[J]. 排灌机械工程学报, 2019, 37(4): 302-306.
[12] 刘坤,徐雷*,杨波,刘蕴. 外啮合斜齿轮高压泵的CFD数值模拟[J]. 排灌机械工程学报, 2019, 37(4): 307-312.
[13] 孟凯旋*,潘中永,王雪豹. 不同航速下喷水推进器压力脉动分析[J]. 排灌机械工程学报, 2019, 37(3): 224-231.
[14] 袁寿其,黄茜*,张金凤,张霞. 叶片出口角对化工离心泵性能的影响[J]. 排灌机械工程学报, 2019, 37(3): 185-191.
[15] 石海峡,杨亚飞,李跃,许巍. 蜗壳式多级泵首级叶轮切割压力脉动特性[J]. 排灌机械工程学报, 2019, 37(1): 7-12.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved