排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (8): 662-667    DOI: 10.3969/j.issn.1674-8530.18.0242
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
核主泵密封间隙对轴向力影响的敏感度分析
韩宝华1,黎义斌2*,王秀勇2,杨由超2
1. 沈阳鼓风机集团核电泵业有限公司, 辽宁 沈阳 110869;2. 兰州理工大学能源与动力工程学院, 甘肃 兰州 730050
Sensitivity analysis of the influence of the seal clearance on axial force in reactor coolant pump
HAN Baohua1, LI Yibin2*, WANG Xiuyong2,YANG Youchao2
1. Shenyang Blower Works Group Nuclear Power Pump Co., Ltd., Shenyang, Liaoning 110869, China; 2. College of Energy and Power Engineering, Lanzhou University of Techenology, Lanzhou, Gansu 730050, China
 全文: PDF (2918 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了揭示密封间隙几何参数对核主泵轴向力的影响规律,基于DDES湍流模型,对不同几何参数组合的核主泵密封间隙进行了数值分析,研究了后密封间隙和长度对核主泵轴向力的影响,获得了额定工况下若干几何参数对核主泵轴向力的定量关系.结果表明:叶轮后盖板外侧轴向力分量F4对后密封间隙和后密封间隙长度敏感度较为显著,而后盖板外侧轴向力分量F4跟流入后泵腔流体的上限压力值密切相关.随着后密封间隙值的增大,流体流经间隙的水力损失逐步减小,流出间隙液流在后泵腔中的压力上限值逐步增大,因此其作用于后盖板压力增大,使总的轴向力在不断增大,即密封间隙对轴向力的敏感度降低,密封间隙在0.3~0.6 mm时,密封间隙对轴向力影响较为显著.而随着密封间隙长度增加,流体经间隙的水力损失增加,流出间隙流体在后泵腔中的压力上限值减小,因此其作用于后盖板的压力减小,总轴向力减小,即密封间隙对轴向力影响的敏感度增强.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩宝华
黎义斌*
王秀勇
杨由超
关键词核主泵   密封间隙   间隙流动   轴向力   数值分析     
Abstract: In order to study the influence of geometrical parameters of rear seal clearance on axial forces and improve the operational reliability of the thrust bearing in the reactor coolant pump, some different sizes of rear seal clearance of the reactor coolant pump were investigated numerically by CFD technology, based on DDES model. The quantitative relationship of different geometrical sizes of rear seal clearance to axial force in the reactor coolant pump was obtained by numerical simulation under the design condition. The results show that component F4 of axial force acting on the rear shroud is more sensitive to the size and length of the rear seal clearance, and component F4 of axial force acting on the rear shroud is closely related to the value of the upper pressure of the fluid flowing throush into the rear pump chamber. With the increase of the rear seal clearance′s size, the hydraulic loss of fluid flowing throush the rear seal clearance decreases, and the value of the upper pressure of the fluid flowing into the rear pump chamber increases gradually. Therefore, the force acting on the rear shroud increases, and the total axial force increases, namely the sensitivity of the rear seal clearance to axial force in the reactor coolant pump is decreasing, and when the size of clearance is 0.3-0.6 mm, the effect of the rear seal clearance on axial force is prominent. With the increase of the length of the rear seal clearance, the hydraulic loss of fluid flowing through the rear seal clearance increases, and the value of the upper pressure of the fluid flowing into the rear pump chamber decreases. Therefore, the force acting on the rear shroud decreases, and the total axial forces decreases, namely the sensitivity of the rear seal clearance to axial force in the reactor coolant pump is increasing.
Key wordsreactor coolant pump   seal clearance   clearance flow   axial force   numerical analysis   
收稿日期: 2018-11-12;
基金资助:国家自然科学基金资助项目(51866009)第一作者简介:韩宝华(1976—),男,山东苍山人,高级工程师(13940021220@163com),主要从事核电用泵设计和制造关键技术研究
引用本文:   
韩宝华,黎义斌*,王秀勇等. 核主泵密封间隙对轴向力影响的敏感度分析[J]. 排灌机械工程学报, 2019, 37(8): 662-667.
HAN Bao-Hua-,LI Yi-Bin-*,WANG Xiu-Yong- et al. Sensitivity analysis of the influence of the seal clearance on axial force in reactor coolant pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(8): 662-667.
 
[1] HIRANO T, GUO Z, KIRK R G. Application of com-putational fluid dynamics analysis for rotating machi-nery—Part Ⅱ: labyrinth seal analysis[J]. Journal of engineering for gas turbines and power, 2005, 127(4):820-826.
[2] SALVADORI S, MARINI A, MARTELLI F. Methodo-logy for the residual axial thrust evaluation in multistage centrifugal pumps[J]. Engineering applications of computational fluid mechanics, 2012, 6(2):271-284.
[3] WILL B C, BENRA F K, DOHMEN H J. Investigation of the flow in the impeller side clearances of a cen-trifugal pump with volute casing[J]. Journal of thermal science, 2012, 21(3):197-208.
[4] 施卫东,高雄发,张德胜,等.叶轮口环间隙对井用潜水泵性能的影响[J].排灌机械工程学报,2013,31(8):651-655. 浏览
SHI Weidong, GAO Xiongfa, ZHANG Desheng, et al.Influence on performance of submersible well pump changing clearance of wear-rings[J]. Journal of drai-nage and irrigation machinery engineering, 2013,31(8):651-655.(in Chinese)
[5] 黄先北,刘竹青,杨魏.离心泵口环间隙附近的空化特性研究[J].农业机械学报,2015,46(2):59-63.
HUANG Xianbei, LIU Zhuqing, YANG Wei.Cavitation characteristics of centrifugal pump near wear-ring clea-rance[J]. Transactions of the CSAM, 2015,46(2):59-63.(in Chinese)
[6] SPALART P R, SHUR M. On the sensitization of turbulence models to rotation and curvature[J]. Aerospace science and technology, 1997(5):297-302.
[7] SPALART P R, SQUIRES K D. The status of detached-eddy simulation for bluff bodies[M]. Berlin:Sprin-ger, 2004.
[8] 刘若阳,侯安平,单树军,等.基于DDES方法的叶栅分离旋涡的非定常流动数值研究[J].推进技术,2017,38(1):16-26.
LIU Ruoyang, HOU Anping, SHAN Shujun, et al.Unsteady numerical investigation on cascade separation vortex flow based on delayed detached-eddy simulation[J]. Journal of propulsion technology, 2017,38(1):16-26.(in Chinese)
[9] 李颖,周文霞,张继革,等. 核反应堆冷却剂循环泵全流道三维数值模拟及性能预估[J]. 原子能科学技术,2009, 43(10): 898-902.
LI Ying, ZHOU Wenxia, ZHANG Jige, et al. Nume-rical simulation of three-dimensional flow through full passage and performance prediction of nuclear reactor coolant pump[J]. Atomic energy science and technology, 2009,43(10):898-902.(in Chinese)
[10] GAO Z, ZHU W, LU L, et al. Numerical and experimental study of unsteady flow in a large centrifugal pump with stay vanes[J]. Journal of fluids engineering, 2014, 136(7):071101.
[11] 黎义斌,李仁年,王秀勇,等.核主泵内部流动干涉的瞬态效应研究[J]. 中国电机工程学报,2015, 35(4):922-928.
LI Yibin, LI Rennian, WANG Xiuyong, et al. Transient effects for flow interaction in the flow field of nuclear main pump [J]. Proceedings of the CSEE, 2015,35(4): 922-928.(in Chinese)
[12] 刘在伦,董玮,张楠,等.离心泵平衡腔液体压力的计算与验证[J].农业工程学报,2013,29(20):54-59.
LIU Zailun, DONG wei, ZHANG Nan, et al. Calcu-lation and validation of fluid pressure of balance cavity in centrifugal pump[J].Transactions of the CSAE, 2013, 29(20): 54-59.(in Chinese)
[13] 李伟,施卫东,蒋小平,等.多级离心泵轴向力的数值计算与试验研究[J].农业工程学报,2012, 28(23):52-59.
LI Wei, SHI Weidong, JIANG Xiaoping, et al. Numerical calculation and experimental study of axial force on multistage centrifugal pump[J]. Transactions of the CSAE, 2012,28(23): 52-59.(in Chinese)
[1] 顾希垚,许锐,胡耀钰,尹俊连,王德忠. 屏蔽电机主泵间隙流动动力特性[J]. 排灌机械工程学报, 2019, 37(8): 673-679.
[2] 冯晓东,*,王磊,马宇,王亚辉. 核主泵滑油冷却器的设计与试验研究[J]. 排灌机械工程学报, 2019, 37(8): 650-655.
[3] 宋煜,顾希尧,刘迎圆,尹俊连,王德忠*. 不同数值计算方法对核主泵压力脉动性能的数值模拟[J]. 排灌机械工程学报, 2019, 37(8): 645-649.
[4] 王明杨,王晓放*,周路圣,何曦,辛建池. 边界效应及高温高压对核主泵模态的影响[J]. 排灌机械工程学报, 2019, 37(6): 668-672.
[5] 杨从新,,张扬,*,钱晨,. 专用堆型对应的核主泵正反转流动数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 381-386.
[6] 张凌峰,孙见君*,马晨波,张玉言. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.
[7] 王巍, 王亚云, 唐滔, 林茵, 王晓放. 反应堆冷却剂模型泵空化性能数值模拟与试验[J]. 排灌机械工程学报, 2019, 37(2): 100-105.
[8] 郭广强, 张人会, 赵万勇, 杨军虎, 黄祺. 浮潜式消防泵启动过程瞬态特性的数值模拟[J]. 排灌机械工程学报, 2019, 37(2): 118-123.
[9] 孙静如,屈晓云,周以松,操瑞嘉,王凯. 高温高压磁力泵流场模拟及轴向力分析[J]. 排灌机械工程学报, 2019, 37(1): 25-30.
[10] 钟伟源*, 朱荣生, 王秀礼, 卢永刚, 刘永, 康俊鋆. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报, 2018, 36(6): 485-493.
[11] 程效锐,*, 符丽, 包文瑞. 核主泵空化流动对能量转换的影响[J]. 排灌机械工程学报, 2018, 36(5): 369-376.
[12] 钟华舟*, 朱荣生, 王秀礼, 张本营, 卢永刚. 启动加速度对核主泵叶轮内部流动的影响[J]. 排灌机械工程学报, 2018, 36(4): 300-306.
[13] 吕延光, 吴景鑫*, 范业娇, 胡雷. 核主泵紧急注入水供应系统结构的改进及试验[J]. 排灌机械工程学报, 2018, 36(4): 283-287.
[14] 程效锐1, 2, 包文瑞1, 符丽1. 隔舌圆角对核主泵环形压水室流动特性的影响[J]. 排灌机械工程学报, 2017, 35(9): 737-.
[15] 程效锐, , 叶小婷, 包文瑞. 导叶轴向安放位置对核主泵性能的影响[J]. 排灌机械工程学报, 2017, 35(6): 472-480.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved