排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (8): 650-655    DOI: 10.3969/j.issn.1674-8530.18.0230
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
核主泵滑油冷却器的设计与试验研究
冯晓东1,2*,王磊1,马宇3,王亚辉2
1. 哈尔滨电气动力装备有限公司, 黑龙江 哈尔滨 150066; 2. 哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001; 3. 中山大学中法核工程与技术学院, 广东 珠海 519082
Design and experimental research of oil cooler for reactor coolant pump
FENG Xiaodong1,2*, WANG Lei1, MA Yu3, WANG Yahui2
1. Harbin Electric Power Equipment Co., Ltd., Harbin, Heilongjiang 150066, China; 2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; 3. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
 全文: PDF (2882 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 根据核主泵滑油冷却器的设计要求,研发了一种换热性能和流体阻力均满足要求的泡状板式滑油冷却器.采用泡状换热板增强换热效果并减小流体阻力.通过设计计算、强度计算和抗震分析对滑油冷却器进行了理论验证.理论计算得到的冷却水出口温度为44.67 ℃,滑油的压降为0.07 MPa,冷却水的压降为0.015 MPa,换热功率为67.76 kW.模态分析得到的频率均大于规定的50 Hz.在3种工况载荷组合下,分别对0/A、B和D等级进行了应力计算,表明薄膜应力和薄膜+弯曲应力的计算值在规定的应力限值内,满足ASME规范要求.计算结果表明设计的滑油冷却器满足设计要求且安全可靠性高.同时,对滑油冷却器的传热性能和流体阻力进行了试验测试,各项结果符合设计条件,且放热量与吸热量的热平衡误差为1.83%,符合热平衡的试验要求.针对滑油冷却器的设计提出的新思路,可以为板式滑油冷却器的改进与优化提供借鉴.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯晓东
*
王磊
马宇
王亚辉
关键词滑油冷却器   核主泵   推力轴承   换热板   试验     
Abstract: According to the requirement of the oil cooler of RCP, a bubble-plate type oil cooler, which meets the requirements of both heat transfer performance and fluid resistance was developed. The heat transfer effect is increased and the fluid resistance is reduced by using the bubble type heat exchanger plate. Through the design calculation, strength calculation and seismic analysis, the theoretical verification of the oil cooler was carried out. Through the theoretical calculation, the cooling water outlet temperature is 44.67 ℃, the oil pressure drop is 0.07 MPa, the cooling water pressure drop is 0.015 MPa, and the heat exchange power is 67.76 kW. The frequencies obtained by modal analysis are greater than the specified 50 Hz. Stress calculations were carried out for the 0/A, B and D grades under the three load combinations, indicating that the calculated values of film stress and film + bending stress were within the specified stress limits and met ASME specifications. The calculation results show that the designed oil cooler meets the design requirements and has high safety and reliability. At the same time, the heat transfer performance and fluid resistance of the oil cooler were tested. The results meet the design conditions and the thermal balance error of heat release and heat absorption is 1.83%, which meets the experimental requirements of heat balance. It presents a new idea for the design of the oil cooler, which can provide reference for the improvement and optimization of the plate type oil cooler.
Key wordsoil cooler   reactor coolant pump   thrust bearing   heat exchanger plate   experiment   
收稿日期: 2018-11-04;
基金资助:黑龙江省自然科学基金面上项目(E2018018);国家自然科学基金重点项目(11875330)
引用本文:   
冯晓东,*,王磊等. 核主泵滑油冷却器的设计与试验研究[J]. 排灌机械工程学报, 2019, 37(8): 650-655.
FENG Xiao-Dong-,*,WANG Lei- et al. Design and experimental research of oil cooler for reactor coolant pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(8): 650-655.
 
[1] 石帅.滑油冷却器强化换热与阻力特性研究[D]. 哈尔滨:哈尔滨工程大学,2013.
[2] 方书起,祝春进,吴勇,等.强化传热技术与新型高效换热器研究进展[J].化工机械,2004,31(4):249-253.
FANG Shuqi,ZHU Chunjin,WU Yong,et al.Research progress of strengthened heat transfer technique and new type high efficient heat exchangers[J].Chemical engineering & machinery,2004,31(4):249-253.(in Chinese)
[3] 刘小丫,丁铭,李春,等.多孔金属材料强化润滑油传热及阻力特性实验研究[J].核动力工程,2017(3):24-28.
[4] LIU Xiaoya,DING Ming,LI Chun,et al.An experimental study of enhanced heat transfer and frictional characte-ristics of porous meatal materials for oil coolers[J].Nuclear power engineering,2017(3):24-28.(in Chinese)
[5] 欧阳新萍,刘冰翛.翅片管汽轮机油冷却器传热性能试验研究[J].热能动力工程,2016,31(8):31-37.
OUYANG Xinping,LIU Bingxiao.Experimental study on heat transfer performance of fin tube oil cooler of steam turbine[J].Journal of engineering for thermal energy & power,2016,31(8):31-37.(in Chinese)
[6] 王萌萌,谢鹏程,鉴冉冉,等.新型强化传热螺杆结构传热性能数值研究及场协同分析[J].北京化工大学学报(自然科学版),2018,45(1):65-71.
WANG Mengmeng,XIE Pengcheng,JIAN Ranran,et al.Numerical simulation of heat transfer enchancement and field synergy analysis of a new type of heat transfer enhancement screw[J].Journal of Beijing University of Chemical Technology(natural science),2018,45(1):65-71.(in Chinese)
[7] 原平方,张婷,齐文哲,等.涡流发生器强化传热的数值模拟[J].天津大学学报(自然科学与工程技术版),2017,50(1):84-90.
YUAN Pingfang,ZHANG Ting,QI Wenzhe,et al.Numerical simulation of vortex generator on heat transfer enhancement [J].Journal of Tianjin University(science and technology),2017,50(1):84-90.(in Chinese)
[8] RAJA B D,JHALA R L,PATEL V.Thermal-hydraulic optimization of plate heat exchanger:A multi-objective approach[J].International journal of thermal sciences,2018,124:522-535.
[9] MOUSAVIAN R T,HAJJARI E,GHASEMI D,et al.Fai-lure analysis of a shell and tube oil cooler[J].Engineering failure analysis,2011,18(1):202-211.
[10] HU Z,HE X,YE L,et al.Full-scale research on heat transfer and pressure drop of high flux plate heat exchanger[J].Applied thermal engineering,2017,118:585-592.
[11] ZHANAG Y,JIANG C,SHOU B,et al.A quantitative energy efficiency evaluation and grading of plate heat exchangers[J].Energy,2018,142: 228-234.
[12] 冯晓东,吴大转,杨立峰,等.CNP1000轴封式核主泵技术[J].排灌机械工程学报,2016,34(7):553-560. 浏览
FENG Xiaodong,WU Dazhuan,YANG Lifeng,et al.Technology for CNP1000 shaft sealed reactor coolant pump[J].Journal of drainage and irrigation machinery engineering,2016,34(7):553 - 560.(in Chinese)
[13] 钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.
[1] 韩宝华,黎义斌*,王秀勇,杨由超. 核主泵密封间隙对轴向力影响的敏感度分析[J]. 排灌机械工程学报, 2019, 37(8): 662-667.
[2] 宋煜,顾希尧,刘迎圆,尹俊连,王德忠*. 不同数值计算方法对核主泵压力脉动性能的数值模拟[J]. 排灌机械工程学报, 2019, 37(8): 645-649.
[3] 施卫东,*,侯云鹤,周岭,李跃民,薛少辉. 不同级数深井离心泵性能的数值模拟与试验[J]. 排灌机械工程学报, 2019, 37(7): 562-567.
[4] 袁建平,邓凡杰,张克玉,崔强磊,司乔瑞*. 气液两相流下叶片泵内部流动研究现状[J]. 排灌机械工程学报, 2019, 37(7): 553-561.
[5] 王明杨,王晓放*,周路圣,何曦,辛建池. 边界效应及高温高压对核主泵模态的影响[J]. 排灌机械工程学报, 2019, 37(6): 668-672.
[6] 俞芸芸,周大庆*,戴启璠,梁豪杰,仲子夜. 轴流泵叶轮的三维多参数设计及试验[J]. 排灌机械工程学报, 2019, 37(5): 393-399.
[7] 张凌峰,孙见君*,马晨波,张玉言. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.
[8] 杨从新,,张扬,*,钱晨,. 专用堆型对应的核主泵正反转流动数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 381-386.
[9] 徐胜荣,王新坤*,肖思强,樊二东. 射流脉冲三通结构参数数值模拟与优化[J]. 排灌机械工程学报, 2019, 37(3): 270-276.
[10] 李琪飞, 李光贤, 李仁年, 王仁本, 陈雨. 水泵水轮机在水轮机工况的导叶水力矩特性[J]. 排灌机械工程学报, 2019, 37(2): 130-135.
[11] 王巍, 王亚云, 唐滔, 林茵, 王晓放. 反应堆冷却剂模型泵空化性能数值模拟与试验[J]. 排灌机械工程学报, 2019, 37(2): 100-105.
[12] 陆静, 汤跃, 程俊.. 基于正交试验的斜击式水涡轮优化与分析[J]. 排灌机械工程学报, 2019, 37(1): 38-42.
[13] 于贤磊, 陈松山, 杨夏威, 周明耀*. 大型灌溉管网减压阀特性数模分析与试验研究[J]. 排灌机械工程学报, 2018, 36(9): 824-828.
[14] 钟伟源*, 朱荣生, 王秀礼, 卢永刚, 刘永, 康俊鋆. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报, 2018, 36(6): 485-493.
[15] 程效锐,*, 符丽, 包文瑞. 核主泵空化流动对能量转换的影响[J]. 排灌机械工程学报, 2018, 36(5): 369-376.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved