排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (8): 673-679    DOI: 10.3969/j.issn.1674-8530.19.0146
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
屏蔽电机主泵间隙流动动力特性
顾希垚,许锐,胡耀钰,尹俊连,王德忠
上海交通大学, 上海 200240
Research on fluid induced forces of clearance flow in canned motor reactor coolant pump
GU Xiyao, XU Rui, HU Yaoyu, YIN Junlian, WANG Dezhong
Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF (3379 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 通过试验研究与数值研究相结合的方法系统地研究了屏蔽电机主泵转定子之间的间隙流动所产生的流体力及其对屏蔽电机主泵转子动力学特性的影响。采用一种三维动网格瞬态计算流体动力学(CFD)方法研究了涡动情况下屏蔽电机主泵间隙流动所带来的流体力。为了测量间隙流动所带来的流体力,还建立了立式间隙流动实验台。通过瞬态CFD方法和试验测量,获得了在不同转速和流量下间隙流动所带来的流体力。由数值计算结果与试验结果对比发现计算结果与试验结果吻合良好,表明采用的三维动网格瞬态CFD方法能准确计算涡动情况下转子所受的流体力。将试验和CFD结果进行分析发现,在屏蔽电机主泵的运行工况下,间隙流为转子系统带来了较大的附加质量和负的主刚度,这一效应会导致转子系统临界转速下降。此外,间隙流动还为系统带来了较为显著的交叉刚度,但转子系统稳定性并未因此而恶化。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾希垚
许锐
胡耀钰
尹俊连
王德忠
关键词屏蔽电机主泵   间隙流动   动力特性   实验   数值     
Abstract: The fluid induced forces of the clearance flow in canned motor reactor coolant pump(RCP)and their effects on the rotordynamic characteristics of the pump are numerically and experimentally analyzed in this work. A transient computational fluid dynamics(CFD)method has been used to investigate the fluid induced force of the clearance. A vertical experiment rig has also been established for the purpose of measuring the fluid induced forces. Fluid induced forces of clearance flow with various whirl frequencies and various boundary conditions are obtained through the CFD method and the experiment. Good agreement is found between the experiment and the simulation, which indicates the validity of the CFD method. Results show that clearance flow brings large mass coefficient into the rotordynamic system and the direct stiffness coefficient is negative under the normal operating condition. The rotordynamic stability of canned motor reactor coolant pump does not deteriorate despite the existence of significant cross-coupled stiffness coefficient from the fluid induced forces of the clearance flow.
Key wordsCanned motor RCP   Clearance flow   Rotordynamics characteristics   Experiment   CFD   
收稿日期: 2018-11-04;
基金资助:国家重大专项(2018ZX06002010);国家自然科学基金资助项目(51576125)第一作者简介:顾希垚(1982—),男,江苏盐城人,讲师(guxiyao@sjtueducn),主要从事核电泵阀可靠性研究
引用本文:   
顾希垚,许锐,胡耀钰等. 屏蔽电机主泵间隙流动动力特性[J]. 排灌机械工程学报, 2019, 37(8): 673-679.
GU Xi-Yao,XU Rui,HU Yao-Yu et al. Research on fluid induced forces of clearance flow in canned motor reactor coolant pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(8): 673-679.
 
[1] D Cheng, ZQ Yao, YBXue, et al. Numerical study on seismic response of the reactor coolant pump in Advanced Passive Pressurized Water Reactor. Nuclear Engineering and Design, 2014, 278: 39-49.
[2] RJ Fritz. The effects of an annular fluid on the vibrations of a long rotor, part 1—theory. Journal of Basic Engineering, 1970, 92(4): 923-929.
[3] RJ Fritz. The Effects of an Annular Fluid on the Vibrations of a Long Rotor, Part 2—Test. ASME J. Basic Eng, 1970, 92: 930-937.
[4] DW Childs. Dynamic analysis of turbulent annular seals based onHirs’ lubrication equation. Journal of lubrication technology, 1983, 105(3): 429-436.
[5] DW Childs, JE Mclean, M Zhang, et al.Rotordynamic performance of a negative-swirl brake for a tooth-on-stator labyrinth seal. Journal of Engineering for Gas Turbines and Power, 2016, 138(6): 062505.
[6] T Iwatsubo and H Ishimaru. Consideration of Whirl Frequency Ratio and Effective Damping Coefficient of Seal. Journal of System Design and Dynamics, 2010, 4(1): 177-188.
[7] Y Kanemori and T Iwatsubo. Rotordynamic analysis of submerged motor pumps: Influence of long seal on the stability of fluid machinery. JSME international journal. Ser. C, Dynamics, control, robotics, design and manufacturing, 1994, 37(1): 193-201.
[8] J Antunes, F Axisa and T Grunenwald. Dynamics of rotors immersed in eccentric annular flow. Part 1: Theory. Journal of Fluids and Structures, 1996, 10(8): 893-918.
[9] FJ Dietzen and R Nordmann. Calculating rotordynamic coefficients of seals by finite-difference techniques. Journal of Tribology, 1987, 109(3): 388-394.
[10] DL Rhode, SJ Hensel and MJ Guidry. Labyrinth sealrotordynamic forces using a three-dimensional Navier-Stokes code. Journal of tribology, 1992, 114(4): 683-689.
[11] M Arghir and J Frêne. A quasi-two-dimensional method for the rotordynamic analysis of centered labyrinth liquid seals. Journal of engineering for gas turbines and power, 1999, 121(1): 144-152.
[12] M Athavale and A Przekwas. SCISEAL: A CFD code for analysis of fluid dynamic forces in seals. 1994.
[13] JJ Moore, DL Ransom and FViana. Rotordynamic Force Prediction of Centrifugal Compressor Impellers Using Computational Fluid Dynamics. Journal of Engineering for Gas Turbines and Power, 2010, 133(4): 042504-042504.
[14] S Subramanian, ASSekhar and BVSSS Prasad. Rotordynamic characteristics of rotating labyrinth gas turbine seal with centrifugal growth. Tribology International, 2016, 97: 349-59.
[15] G Chochua and TA Soulas. Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals. Journal of Tribology, 2006, 129(2): 424-9.
[16] X Yan, J Li and Z Feng. Investigations on theRotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model. Journal of Vibration and Acoustics, 2011, 133(4): 041007.
[17] X Yan, K He, J Li, et al. A Generalized Prediction Method forRotordynamic Coefficients of Annular Gas Seals. Journal of Engineering for Gas Turbines and Power, 2015, 137(9): 092506.
[18] D Wu, X Jiang, S Li, et al. A new transient CFD method for determining the dynamic coefficients of liquid annular seals.Journal of Mechanical Science and Technology, 2016, 30(8): 3477-86.
[19] PD Brown and DW Childs. Measurement Versus Predictions ofRotordynamic Coefficients of a Hole-Pattern Gas Seal With Negative Preswirl. Journal of Engineering for Gas Turbines and Power, 2012, 134(12): 122503.
[20] NJ Mehta and DW Childs. Measured Comparison of Leakage andRotordynamic Characteristics for a Slanted-Tooth and a Straight-Tooth Labyrinth Seal. Journal of Engineering for Gas Turbines and Power, 2014, 136(1): 012501.
[21] BG Kerr. Experimental and theoreticalrotordynamic coefficients and leakage of straight smooth annular gas seals. Texas A&M University, 2005.
[22] G Kirk and R Gao. Influence ofPreswirl on Rotordynamic Characteristics of Labyrinth Seals. Tribology Transactions, 2012, 55(3): 357-64.
[23] D Sun, S Wang, Z Xiao, et al. Measurement versus predictions ofrotordynamic coefficients of seal with swirl brakes. Mechanism and Machine Theory, 2015, 94: 188-99.
[1] 张人会,*,张四代,田磊,陈学炳. 射流式离心泵性能及内部流动特性[J]. 排灌机械工程学报, 2019, 37(9): 763-768.
[2] 韩宝华,黎义斌*,王秀勇,杨由超. 核主泵密封间隙对轴向力影响的敏感度分析[J]. 排灌机械工程学报, 2019, 37(8): 662-667.
[3] 宋煜,顾希尧,刘迎圆,尹俊连,王德忠*. 不同数值计算方法对核主泵压力脉动性能的数值模拟[J]. 排灌机械工程学报, 2019, 37(8): 645-649.
[4] 孙丹,李胜远*,艾延廷,王志,周海仑. 基于油膜力做功的滑动轴承动力特性及转子稳定性[J]. 排灌机械工程学报, 2019, 37(8): 699-704.
[5] 徐海良,*,周永兴,杨放琼,,吴波,. 进料流量对深海矿石输送设备内流特性影响分析[J]. 排灌机械工程学报, 2019, 37(7): 618-624.
[6] 施卫东,*,侯云鹤,周岭,李跃民,薛少辉. 不同级数深井离心泵性能的数值模拟与试验[J]. 排灌机械工程学报, 2019, 37(7): 562-567.
[7] 袁建平,邓凡杰,张克玉,崔强磊,司乔瑞*. 气液两相流下叶片泵内部流动研究现状[J]. 排灌机械工程学报, 2019, 37(7): 553-561.
[8] 王燕燕,,赵伟国,*,韩向东,,郑英杰,. 基于叶片包角和出口安放角对叶轮的改进设计[J]. 排灌机械工程学报, 2019, 37(7): 574-579.
[9] 刘建河,李星光*,许晏铭. 喷针-环形电极配置对感应荷电喷雾的影响[J]. 排灌机械工程学报, 2019, 37(6): 521-527.
[10] 岑春海,潘中永*,王雪豹. 喷水推进器全流道空化流动数值模拟[J]. 排灌机械工程学报, 2019, 37(6): 528-533.
[11] 杨孙圣,邵珂*,戴韬. 叶片包角对混流泵作透平的特性影响[J]. 排灌机械工程学报, 2019, 37(6): 475-479.
[12] 岳书波,张鸿清*,刁明军,代尚逸. 泄洪闸胸墙压坡段的数值模拟[J]. 排灌机械工程学报, 2019, 37(6): 491-497.
[13] 周颖,郑源*,何中伟,孙奥冉,张付林,汪昊蓝. 大型轴流泵反向发电压力脉动及流固耦合[J]. 排灌机械工程学报, 2019, 37(6): 480-485.
[14] 赵道利*,高诚锋,孙维鹏,郭鹏程,马薇. 泄水锥加长与主轴中心孔补水对水轮机尾水管流态的影响[J]. 排灌机械工程学报, 2019, 37(5): 413-419.
[15] 江伟*,蒋婷, 朱相源. 余热利用换热器硫酸和水蒸气耦合凝结数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 420-426.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved