排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (7): 632-638    DOI: 10.3969/j.issn.1674-8530.17.0178
农业水土工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
不同斥水程度黏壤土一维入渗特性试验研究
柴红阳1,2,陈俊英1,2*,张林3,王嘉瑞1,2,刘畅1,2
1. 西北农林科技大学水利与建筑工程学院, 陕西 杨凌 712100;2. 西北农林科技大学旱区农业水土工程教育部重点实验室, 陕西 杨凌 712100;3. 西北农林科技大学水土保持研究所, 陕西 杨凌 712100
Experiment on one-dimensional infiltration characteristics of clay loam soil with different water repellency
CHAI Hongyang1,2, CHEN Junying1,2*, ZHANG Lin3, WANG Jiarui1,2, LIU Chang1,2
1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; 2. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; 3. Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
 全文: PDF (1802 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 采用人工配置的5种斥水程度等级的黏壤土,通过室内一维积水入渗试验,探究了斥水程度对黏壤土湿润锋运移、累积入渗量、入渗率、土壤剖面含水率以及水分再分布的影响,分析了不同斥水程度土壤入渗条件下入渗模型的适用性.结果表明:随着斥水程度增大,土壤入渗率变慢,湿润锋运移相同距离所需要的时间显著增加,其中运移到40 cm时,强斥水土壤比亲水土壤的运移时间增加了63%;随着斥水程度增大,累积入渗量减小,入渗结束时强斥水土壤比亲水土壤的累积入渗量减小了27%;土壤的入渗率也随着斥水程度增大而逐渐减小,强斥水土壤的稳定入渗率为亲水土壤的37%;随着斥水程度增大,土壤剖面含水率减小,且经过相同时间的水分再分布,土壤剖面含水率的变化量也随之减小;幂函数可以很好地模拟湿润锋运移距离和累积入渗量随时间的变化过程;对弱斥水土壤而言,Philip模型和Kostiakov模型对入渗率与时间的关系有较高的拟合度,而强斥水土壤则Kostiakov模型更为适用.研究可为斥水土壤的入渗提供理论基础.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴红阳
陈俊英
*
张林
王嘉瑞
刘畅
关键词斥水程度   土壤水分入渗   水分再分布   入渗模型     
Abstract: To explore the effect of water repellency on the infiltration characteristics of clay loam, indoor water infiltration experiment was conducted in this paper. There were five kinds of clay loam with different water repellency degrees. The investigated soil water infiltration characteristics include wetting front, infiltration rate, cumulative infiltration, soil moisture and water redistribution. The applicability of three soil infiltration empirical models under different water repellency conditions was analyzed. The results showed that the soil infiltration rate was reduced, and the time required for wetting front migration was increased significantly with increasing water repellency. The time for the wetting front to travel the same distance was increased significantly, especially the time for 40 cm travelling distance in soil with strong repellency was 63% longer than that in hydrophilic soil. With increasing water repellency, the cumulative infiltration was reduced and the cumulative infiltration of S4 was decreased by 27% compared with S0 at the end of infiltration. The infiltration rate was also decreased with the increase of water repellency, and the saturated infiltration rate was 37% of that in hydrophilic soil. Both the moisture of soil profile and the change in moisture of redistributed soil profile in the same time were decreased with increasing water repellency. The power function model can simulate the migration process of wet front and the variation of cumulative infiltration with time. For the soil with slight repellence, the Philip model and the Kostiakov model were subject to a better accuracy in fitting the relationship between infiltration rate and time, while the Kostiakov model was even more suitable for the soil with strong repellency. The study can provide a basis for the infiltration theory of repellent soil.
Key wordsdegree of water repellency   soil water infiltration   moisture redistribution   infiltration model   
收稿日期: 2017-08-05;
基金资助:国家自然科学基金资助项目(51409221,51349001);西北农林科技大学基本科研业务费资助项目(2452017116)
引用本文:   
柴红阳,,陈俊英等. 不同斥水程度黏壤土一维入渗特性试验研究[J]. 排灌机械工程学报, 2019, 37(7): 632-638.
CHAI Hong-Yang-,,CHEN Jun-Ying- et al. Experiment on one-dimensional infiltration characteristics of clay loam soil with different water repellency[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(7): 632-638.
 
[1] CLOTHIER B E, VOGELER I, MAGESAN G N. The breakdown of water repellency and solute transport through a hydrophobic soil[J]. Journal of hydrology, 2000,231/232:255-264.
[2] 宋红阳,李毅,贺缠生. 不同质地斥水土壤的入渗模型[J]. 排灌机械工程学报,2013,31(7):629-635. 浏览
[3] 王志刚,申红芳,王磊. 我国水稻生产的特点与影响因素调查分析[J]. 中国稻米,2010,16(1):26-29.
[4] SONG Hongyang, LI Yi, HE Chansheng. Infiltration models for different textures of water-repellent soils[J]. Journal of drainage and irrigation machinery enginee-ring, 2013,31(7):629-635.(in Chinese)
[5] 刘春成,李毅,任鑫,等. 四种入渗模型对斥水土壤入渗规律的适用性[J]. 农业工程学报,2011,27(5):62-67.
[6] WANG Zhigang, SHEN Hongfang, WANG Lei. Investigation and analysis of the characteristics and influencing factors of rice production in China[J]. China rice, 2010,16(1):26-29.(in Chinese).
[7] 中华人民共和国水利部. 2015年全国水利发展统计公报[M]. 北京:中国水利水电出版社, 2016:12.
[8] 袁静,蒋新会,黄锦珠,等. 水稻拔节孕穗期旱涝急转对其生理特性的影响[J]. 水利科技与经济, 2008,14(4):259-262.
[9] LIU Chuncheng, LI Yi, REN Xin, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the CSAE, 2011,27(5):62-67.(in Chinese)
[10] YUAN Jing, JIANG Xinhui, HUANG Jinzhu, et al. Effects of fast conversion from drought to waterlogging stress on physiological characteristics of rice in jointing-booting stage[J]. Water conservancy science and technology and economy, 2008,14(4):259-262.(in Chinese).
[11] 李旭, 付立东, 王宇, 等. 不同时期水分胁迫对水稻生长发育和产量的影响[J]. 江苏农业科学, 2017,45(7):70-73.
[12] WALLACH R, JROTZICK C. Unstable finger-like flow in water-repellent soils during wetting and redistribution— the case of a point water source[J]. Journal of hydrolo-gy, 2008,351(1/2):26-41.
[13] LI Xu, FU Lidong, WANG Yu, et al. Effects of water stress on growth and yield of rice at different stages[J]. Jiangsu agricultural sciences, 2017,45(7):70-73.(in Chinese)
[14] 李轲, 景元书, 谭孟祥, 等. 不同灌水量对拔节孕穗期水稻生理及水分利用率的影响[J]. 江苏农业科学, 2017,45(13):60-63.
[15] WALLACH R. Effect of soil water repellency on moi-sture distribution from a subsurface point source[J]. Water resources research, 2010,46(8):863-863.
[16] LI Ke, JING Yuanshu, TAN Mengxiang, et al. Effects of different irrigation rates on physiological characteri-stics and water use efficiency of rice at jointing and booting stage[J]. Jiangsu agricultural sciences, 2017,45(13):60-63.(in Chinese)
[17] 李钟学,张季中,王玉莲. 水稻涝害的研究与探讨[J]. 中国林副特产, 2004(6):24-25.
[18] DOERR S H, SHAKESBY R A, WALSH R P D. Soil water repellency: its causes, characteristics and hydro-geomorphoogical significance[J]. Earth-science revie-ws, 2000,51(1/2/3/4):33-65.
[19] LI Zhongxue, ZHANG Jizhong, WANG Yulian. Study and discussion on rice waterlogging[J]. Forest by-product and speciality in China, 2004(6):24-25.(in Chinese).
[20] 夏石头,彭克勤,曾可. 水稻涝害生理及其与水稻生产的关系[J]. 植物生理学通讯, 2000,36(6):581-588.
[21] AHMED, M E, VAN GEEL P J, et al. Potential concerns related to using octadecyltrichlorosilane(OTS)in rendering soils and porous ceramics hydrophobic[J]. Journal of contaminant hydrology, 2009,110(1/2):22-33.
[22] XIA Shitou, PENG Keqin, ZENG Ke. Relationship between physiological damage of flood to rice and rice production[J]. Plant physiology communications, 2000,36(6):581-588.(in Chinese).
[23] ZAVALA L M, GRANGED A J P, JORDAN A, et al. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions[J]. Geoderma, 2010,158(3/4):366-374.
[24] DEKKER L W, DOERR S H, OOSTINDIE K, et al. Water repellency and critical soil water content in a dune sand[J]. Soil Science Society of America journal, 2001,65(6):1667-1674.
[25] 雷志栋,杨诗秀,谢森传. 土壤水动力学[M]. 北京:清华大学出版社,1988:121-131.
[26] 王全九,来剑斌,李毅. Green-Ampt模型与Philip入渗模型的对比分析[J]. 农业工程学报,2002,18(2):13-16.
WANG Quanjiu, LAI Jianbin, LI Yi. Comparison of Green-Ampt model with Philip infiltration model[J]. Transactions of the CSAE, 2002,18(2):13-16.(in Chinese)
[27] KIRKHAM M B. Principles of soil and plant water relations[M]. London, UK: Elsevier Academic Press, 2004:145-150.
[28] 杨松,龚爱民,吴珺华,等. 接触角对非饱和土中基质吸力的影响[J].岩土力学,2015,36(3):674-678.
YANG Song, GONG Aimin, WU Junhua, et al. Effect of contact angle on matric suction of unsaturated soil.[J]. Rock and soil mechanics, 2015,36(3):674-678.(in Chinese)
[29] 陈俊英,刘畅,张林,等. 斥水程度对脱水土壤水分特征曲线的影响[J]. 农业工程学报, 2017,33(21):188-193.
CHEN Junying, LIU Chang, ZHANG Lin, et al. Impact of repellent levels on drainage soil water characteristic curve[J]. Transactions of the CSAE, 2017,33(21):188-193.(in Chinese)
[30] RYE C F, SMETTEM K R J. The effect of water repellent soil surface layers on preferential flow and bare soil evaporation[J]. Geoderma, 2017,289:142-149.
[31] 杨松,黄剑锋,罗茂泉,等. 斥水性砂土水-气形态及其对斥水-亲水转化的影响分析[J]. 农业机械学报,2017,48(11):247-252.
YANG Song, HUANG Jianfeng, LUO Maoquan, et al. Pore water-air configurations in water repellent sandy soil and its effects on transformation of hydrophilicity to hydrophobicity[J]. Transactions of the CSAM, 2017,48(11):247-252.(in Chinese)
[1] 陈琳,费良军*,金世杰,王子路,钟韵. 不同含沙率浑水膜孔灌三维Green-Ampt入渗模型[J]. 排灌机械工程学报, 2019, 37(4): 352-357.
[2] 金世杰, 费良军, 傅渝亮. 土壤水分再分布特性研究进展[J]. 排灌机械工程学报, 2016, 34(3): 251-259.
[3] 栗涛, 王全九,. 淡水入渗模型对咸水入渗过程的适用性[J]. 排灌机械工程学报, 2014, 32(1): 80-85.
[4] 刘姗姗,, 许迪,, 白美健,, 李益农,, 温新民. 土壤紧实度估算G-A模型参数的空间变异分析[J]. 排灌机械工程学报, 2013, 31(10): 894-900.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved