排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (7): 618-624    DOI: 10.3969/j.issn.1674-8530.17.0129
流体工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
进料流量对深海矿石输送设备内流特性影响分析
徐海良1,2*,周永兴1,杨放琼1,2,吴波1,2
1. 中南大学机电工程学院, 湖南 长沙 410083; 2. 中南大学高性能复杂制造国家重点实验室, 湖南 长沙 410083
Analysis on influences of feeding flow rate on flow characteristics in deep-sea ore hydraulic transport equipment
XU Hailiang1,2*, ZHOU Yongxing1, YANG Fangqiong1,2, WU Bo1,2
1. School of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China; 2. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, China
 全文: PDF (2998 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究进料流量对深海矿石水力输送设备内固液流体流动规律及工作性能的影响,建立了由储料罐、钟阀与分离器所组成的设备的三维流场模型,应用计算流体力学理论和Fluent仿真软件对矿石水力输送设备内固液两相流场进行数值模拟,比较不同进料流量对矿石水力输送设备内颗粒浓度、速度、压力分布的影响,进而分析进料流量对矿石颗粒流入储料罐的速度、矿浆分离效率等工作性能的影响.结果表明:进料流量在200 ~320 m3/h内变化,储料罐不同截面处颗粒平均浓度稳定在8 kg/m3左右,最大浓度增大明显;随着进料流量增大,流体运动趋势更加复杂,流动愈加混乱,局部短路回流更加严重,储料罐内浆体压力逐渐增大,不同截面处静压力增大梯度相近,最大动压力变化幅度明显;随着进料流量增大,矿浆分离效率下降,分离器底部矿石颗粒堆积量增加,矿石颗粒流入储料罐的效率下降,实际工作过程应控制进料流量在280 m3/h以下.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐海良
*
周永兴
杨放琼
吴波
关键词矿石输送设备   进料流量   固液两相流   工作性能   数值模拟     
Abstract: A three-dimensional fluid domain model of deep-sea ore transport equipment, which consists of a storage tank, a bell valve and a separator, was established, then the solid-liquid two-phase flow field in the equipment was simulated based on the computational fluid dynamics software-Fluent to study effects of feeding flow rate on solid-liquid flow pattern and operational performance of the equipment. Specially, influences of feeding flow rate on ore particle concentration, velocity and pressure distribution in the equipment were compared, and then ore particle velocity and slurry separation efficiency were analyzed. The results show that the average concentration of ore particles in different sections of the storage tank keeps being around 8 kg/m3, but the maximum concentration increases obviously when the feeding flow rate varies in the range of 200-320 m3/h. With increasing feeding flow rate, the fluid motion is more complicated, and the flow becomes even more chaotic, and the local reverse flow is more significant. The slurry pressure in the storage tank increases gradually, and the static pressure gradient is similar to each other in different sections, but the maximum dynamic pressure varies considerably. with the increase of feeding flow rate, the efficiency of ore slurry separation decreases, i.e. less ore particles flow into the storage tank and more particles deposit on bottom of the separator. In consequence, the feeding flow rate should be controlled at less than 280 m3/h under actual operational conditions of the equipment.
Key wordsore transporting equipment   feed flow   solid-liquid two-phase flow   working performance   numerical simulation   
收稿日期: 2017-06-09;
基金资助:国家自然科学基金资助项目(51375498);教育部博士学科点专项科研基金资助项目(20130162110004)
引用本文:   
徐海良,*,周永兴等. 进料流量对深海矿石输送设备内流特性影响分析[J]. 排灌机械工程学报, 2019, 37(7): 618-624.
XU Hai-Liang-,*,ZHOU Yong-Xing- et al. Analysis on influences of feeding flow rate on flow characteristics in deep-sea ore hydraulic transport equipment[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(7): 618-624.
 
[1] 柯克比.山坡水文学[M].哈尔滨:哈尔滨工业大学出版社,1989:48-49.
[2] ZOU Weisheng, HUANG Jiazhen. Lifting technology for deep sea mining of manganese nodules[J]. Mining and metallurgical engineering, 2006, 26(3):1-5.(in Chinese)
[3] 杨放琼,徐海良,李立.一种深海采矿阀控式清水泵矿石水力提升设备:中国,201410519903.0[P].2014-10-08.
[4] 徐海良,周刚,吴万荣,等. 深海采矿储料罐输送设备固液两相流数值计算与分析[J]. 中南大学学报(自然科学版), 2012, 43(1): 111-117.
[5] 雷廷武,刘汗,潘英华,等.坡地土壤降雨入渗性能的径流-入流-产流测量方法与模型[J].中国科学:地球科学,2005,35(12):1180-1186.
[6] XU Hailiang, ZHOU Gang, WU Wanrong, et al. Numerical calculation and analysis of solid-liquid two-phase flow in tank transporting equipment for deep-sea mining[J]. Journal of Central South University(science and technology), 2012, 43(1):111-117.(in Chinese)
[7] 黄剑峰,张立翔,姚激,等.水轮机泥沙磨损两相湍流场数值模拟[J].排灌机械工程学报,2016,34(2):128-133. 浏览
[8] LEI Tingwu, LIU Han, PAN Yinghua, et al. Runoff and inflow runoff measurement method and model for slope rainfall infiltration performance [J]. Science in China(series D),2005,35(12): 1180-1186.(in Chinese)
[9] 管瑶,雷廷武,刘芳芳,等.土壤点源入渗自动测量系统监测滴头下土壤湿润过程[J].农业工程学报,2016,32(14):1-7.
[10] HUANG Jianfeng,ZHANG Lixiang,YAO Ji,et al. Numerical simulation of two-phase turbulent flow in Fran-cis turbine passage on sediment erosion[J]. Journal of drainage and irrigation machinery engineering,2016,34(2): 128-133.(in Chinese)
[11] 李秋龙. 赤泥沉降槽内多相流动和絮凝沉降的数值仿真与优化[D].长沙:中南大学,2014:26-27.
[1] 施卫东,*,侯云鹤,周岭,李跃民,薛少辉. 不同级数深井离心泵性能的数值模拟与试验[J]. 排灌机械工程学报, 2019, 37(7): 562-567.
[2] 袁建平,邓凡杰,张克玉,崔强磊,司乔瑞*. 气液两相流下叶片泵内部流动研究现状[J]. 排灌机械工程学报, 2019, 37(7): 553-561.
[3] 王燕燕,,赵伟国,*,韩向东,,郑英杰,. 基于叶片包角和出口安放角对叶轮的改进设计[J]. 排灌机械工程学报, 2019, 37(7): 574-579.
[4] 刘建河,李星光*,许晏铭. 喷针-环形电极配置对感应荷电喷雾的影响[J]. 排灌机械工程学报, 2019, 37(6): 521-527.
[5] 岑春海,潘中永*,王雪豹. 喷水推进器全流道空化流动数值模拟[J]. 排灌机械工程学报, 2019, 37(6): 528-533.
[6] 杨孙圣,邵珂*,戴韬. 叶片包角对混流泵作透平的特性影响[J]. 排灌机械工程学报, 2019, 37(6): 475-479.
[7] 岳书波,张鸿清*,刁明军,代尚逸. 泄洪闸胸墙压坡段的数值模拟[J]. 排灌机械工程学报, 2019, 37(6): 491-497.
[8] 周颖,郑源*,何中伟,孙奥冉,张付林,汪昊蓝. 大型轴流泵反向发电压力脉动及流固耦合[J]. 排灌机械工程学报, 2019, 37(6): 480-485.
[9] 江伟*,蒋婷, 朱相源. 余热利用换热器硫酸和水蒸气耦合凝结数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 420-426.
[10] 张凌峰,孙见君*,马晨波,张玉言. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.
[11] 边若鹏,昝丙合,朱建勇*,何淼. 侧风对螺旋桨气动特性影响的数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 435-440.
[12] 赵道利*,高诚锋,孙维鹏,郭鹏程,马薇. 泄水锥加长与主轴中心孔补水对水轮机尾水管流态的影响[J]. 排灌机械工程学报, 2019, 37(5): 413-419.
[13] 杨从新,,张扬,*,钱晨,. 专用堆型对应的核主泵正反转流动数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 381-386.
[14] 柏宇星,*,刘莹莹,孔繁余,夏斌,戴韬. 叶轮外径对混流泵作透平性能的影响[J]. 排灌机械工程学报, 2019, 37(4): 284-288.
[15] 刘坤,徐雷*,杨波,刘蕴. 外啮合斜齿轮高压泵的CFD数值模拟[J]. 排灌机械工程学报, 2019, 37(4): 307-312.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved