排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (7): 593-599    DOI: 10.3969/j.issn.1674-8530.17.0085
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
超低比转数自平衡多级离心泵转子模态分析
杨勇飞1,李伟1*,施卫东2,马新华1,张文全1,许荣军3
1. 江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013; 2. 南通大学机械工程学院, 江苏 南通 226019; 3. 蓝深集团股份有限公司, 江苏 南京 211500
Modal analysis of super low-specific-speed self-balancing multistage centrifugal pump rotor
YANG Yongfei1, LI Wei1*, SHI Weidong2, MA Xinhua1, ZHANG Wenquan1, XU Rongjun3
1. National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. School of Mechanical Engineering, Nantong University, Nantong, Jiangsu 226019, China; 3. Lanshen Group Limited by Share Ltd., Nanjing, Jiangsu 211500, China
 全文: PDF (6636 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了掌握多级离心泵转子振动特性,避免泵运行中发生共振,保证水泵运行的稳定性,基于软件ANSYS Workbench对超低比转数自平衡多级离心泵转子进行模态分析.计算对比干态无流场预应力、干态有流场预应力及湿态有流场预应力3种情况下泵转子各阶次的固有频率,并提取泵转子的前8阶模态对应振型进行分析.结果表明:3种情况下,转子各阶反进动固有频率均小于同一阶次下的正进动频率;干态有流场预应力相比无流场预应力情况下各阶固有频率略有提高,说明流场预应力对泵转子起到一定的应力刚化作用;湿态下水对转子的质量力、黏性以及阻尼的影响会显著降低了泵转子各个阶次的固有频率,湿态下水的附加力对转子的模态影响更为明显;对比转子的前4阶振型,发现3种情况下转子各阶次的振动形式和最大振幅出现位置基本相同,其中第三阶为绕轴心的扭转振动,其余3阶振型对应为不同方向和不同形式的弯曲振动.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨勇飞
李伟*
施卫东
马新华
张文全
许荣军
关键词多级离心泵   转子   模态分析   共振   固有频率     
Abstract: To grasp vibration characteristics of multi-stage centrifugal pump rotor and avoid occurrence of resonance during pump operation so as to guarantee the stability of operation, modal analysis on the rotor of a super low-specific-speed and self-balancing multistage centrifugal pump was carried out based on the commercial software ANSYS Workbench in this article. Natural frequencies under three conditions namely dry rotor without flow field pre-stress, dry rotor with flow field pre-stress and wet rotor with flow field pre-stress were calculated and compared. Further, the first eight modals of the rotor were extracted and analyzed. It is shown that the natural frequency of reverse precession is lower than that of forward precession for the same order. The natural frequency increases slightly under condition with flow field pre-stress compared with that without pre-stress, indicating that the flow field pre-stress can rigidize the pump rotor in a certain degree. Under wet condition, additional mass, viscous and damping effects of water have intensively decreased influence on the natural frequency, and the mass force of water has a more significant effect on the frequency. By comparing the first four order vibration modes of the pump rotor, it is found that vibration mode and position where the maximum vibration amplitude appears are identical basically under three conditions. The third order vibration is rotational vibration around the pump shaft-axis, while the other three vibrations correspond to bending vibrations with di-fferent directions and shapes.
Key wordsmulti-stage centrifugal pump   rotor   modal analysis   resonance   natural frequency   
收稿日期: 2017-04-18;
基金资助:国家自然科学基金资助项目(51409127,51679111,51579118);江苏省重点研发计划项目(BE2015119,BE2015001-4);江苏省自然科学基金资助项目(BK20161472)
引用本文:   
杨勇飞,李伟*,施卫东等. 超低比转数自平衡多级离心泵转子模态分析[J]. 排灌机械工程学报, 2019, 37(7): 593-599.
YANG Yong-Fei-,LI Wei-*,SHI Wei-Dong- et al. Modal analysis of super low-specific-speed self-balancing multistage centrifugal pump rotor[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(7): 593-599.
 
[1] LIANG Q W, RODRIGUEZ C G, EGUSQUIZA E, et al. Numerical simulation of fluid added mass effect on a francis turbine runner[J]. Computers & fluids, 2007, 36(6):1106-1118.
[2] 陈宁,成晓伟,陈乃娟.多级离心泵转子部件有限元分析[J].科学技术与工程,2010,10(14):3459-3463.
[3] 楼文高. 船用柴油机气缸盖固定螺栓强度的可靠性分析[J]. 渔业机械仪器,1993,20(106):21-24.
[4] CHEN Ning, CHENG Xiaowei, CHEN Naijuan, et al. Finite element analysis of multi-stage centrifugal pump rotor parts [J]. Science technology and engineering,2010,10(14):3459-3463.(in Chinese)
[5] 袁振伟,李志农,王三保,等.转子轴向碰摩非线性流固耦合动力学特性全自由度分析[J].中国电机工程学报,2008,28(14):92-97.
[6] LOU Wengao. Reliability analysis of strength of fixed bolts for cylinder head of marine diesel engine[J]. Fishery machinery and instrument,1993,20(106):21-24.(in Chinese)
[7] 张续钟,刘思靓,马建峰. 混流式水轮发电机顶盖螺栓的安全性设计方法[J]. 小水电,2017(5):25-28.
[8] YUAN Zhenwei, LI Zhinong, WANG Sanbao, et al. Dynamic analysis in full degrees of freedom of rotor′s axial rub-impact with consideration of nonlinear fluid-structure interaction forces[J]. Proceedings of the CSEE, 2008, 28(14):92-97.(in Chinese)
[9] ZHANG Xuzhong,LIU Siliang,MA Jianfeng. Safety design method for top bolt of Francis turbine generator[J]. Small hydro power,2017(5):25-28.(in Chinese)
[10] 蓝秀琼,陈建华. 汽车用高强度组合螺栓断裂失效分析[J]. 机械强度,2018,40(5):1263-1265.
[11] 周岭, 侯云鹤, 王伟,等. 基于LMS Virtual.Lab的多级离心泵数值模态分析[J]. 流体机械, 2017, 45(6):21-25.
[12] LAN Xiuqiong, CHEN Jianhua. Fracture failure analysis of a auto high strength assembling bolt[J]. Journal of mechanical strength, 2018,40(5):1263-1265.(in Chinese)
[13] 王熙婷. 螺栓联接接触问题有限元分析[J]. 工业技术创新,2017,4(6):11-14.
[14] ZHOU Ling, HOU Yunhe, WANG Wei, et al. Numeri-cal modal analysis of multistage centrifugal pump based on LMS Virtual. Lab software[J]. Fluid machinery, 2017, 45(6):21-25.(in Chinese)
[15] 施卫东,王国涛,蒋小平等.流固耦合作用对轴流泵内部流场影响的数值计算[J].流体机械,2012,40(1):31-35.
[16] WANG Xiting. Finite element analysis on the contact issue of bolt connection[J]. Industrial technology innovation, 2017,4(6):11-14.(in Chinese)
[17] 田彤辉,袁杰红,王青文. 基于有限元模型的螺栓法兰连接结构冲击失效实验方案研究[C]//第27届全国结构工程学术会议论文集(第Ⅱ册). 2018:7.
[18] 石虹. 高强度螺栓失效若干因素的研究[D]. 沈阳:东北大学, 2012.
[19] 刘献良,张路,赖云亭,等. 电站连接螺栓断裂失效分析[J]. 理化检验(物理分册),2018,54(10):778-781.
[20] SHI Weidong, WANG Guotao, JIANG Xiaoping, et al. Numerical calculation for effect of fluid-structure interaction on flow field in axial-flow pump[J]. Fluid Machinery, 2012,40(1):31-35.(in Chinese)
[21] LIU Xianliang, ZHANG Lu, LAI Yunting, et al. Failure analysis on fracture of connecting bolts in a power plant[J]. Physical testing and chemical analysis(part A: physical testing), 2018,54(10):778-781.(in Chinese)
[22] 施刚,石永久,王元清,等. 端板连接高强度螺栓受力特性试验研究[J]. 东南大学学报(自然科学版),2004,34(3):375-378.
[23] LIU Demin, LIU Xiaobing. Vibration analysis of turbine based on fliud-structure coupling[J].Chinese journal of mechanical engineering, 2008,21(4):40-43.
[24] BENRA F K, DOHMEN H J. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation[C]//Proceedings of the 2007ASME Pressure Vessels and Piping Division Conference,2007:41-48.
[1] 庞庆龙,蒋小平*,朱嘉炜,吴国桥,王鑫伟,王莉. 泵腔径向间隙对多级离心泵泵腔内部流场的影响[J]. 排灌机械工程学报, 2019, 37(7): 580-586.
[2] 黄凯乐,袁建平,司乔瑞,林刚. 多级离心泵多工况内部压力脉动数值计算[J]. 排灌机械工程学报, 2019, 37(5): 387-392.
[3] 张智伟,施卫东*,张德胜,陈宗贺,黄俊. 基于热流固耦合的LNG低温潜液泵转子部件模态分析[J]. 排灌机械工程学报, 2019, 37(3): 211-215.
[4] 曹卫东, 张忆宁, 姚凌钧. 多级离心泵内部固液两相流动及磨损特性[J]. 排灌机械工程学报, 2017, 35(8): 652-.
[5] 卢展雄, 刘琼, 王凯, 陈昆. 基于专利地图的国内外多级离心泵技术分析[J]. 排灌机械工程学报, 2017, 35(3): 216-221.
[6] 陈宇杰, 郑源, 阚阚, 张海胜, 徐建叶, 陈鹏, 陈荣杰. 轴流泵转子系统水中模态分析[J]. 排灌机械工程学报, 2017, 35(2): 126-132.
[7] 谢荣盛,, 汤方平, 李帅领, 石丽建, 杨帆. 五级离心泵叶轮径向不平衡力[J]. 排灌机械工程学报, 2017, 35(10): 842-848.
[8] 马新华, 何勇冠, 陆伟刚, 蔡朋飞. 超低比转数多级离心泵水力优化与性能试验[J]. 排灌机械工程学报, 2016, 34(9): 755-760.
[9] 马新华, 冯琦, 蒋小平, 王伟, 陆伟刚. 导叶叶片数对多级离心泵压力脉动的影响[J]. 排灌机械工程学报, 2016, 34(8): 665-671.
[10] 王洋, 赵立峰, 刘志超, 宁超, 朱振涛, 谢山峰. 多级离心泵水力性能数值预测涡量分析法[J]. 排灌机械工程学报, 2016, 34(7): 561-566.
[11] 曹卫东, 刘冰, 张忆宁, 刘光辉. 预应力下矿用抢险排水泵转子部件湿模态计算[J]. 排灌机械工程学报, 2016, 34(6): 477-482.
[12] 王凯, 王文博, 刘厚林, 夏晨. 多级离心泵叶轮与导叶的匹配特性[J]. 排灌机械工程学报, 2016, 34(5): 392-398.
[13] 王伟, 施卫东, 蒋小平, 冯琦, 陆伟刚, 张德胜,. 基于正交试验及CFD的多级离心泵叶轮优化设计[J]. 排灌机械工程学报, 2016, 34(3): 191-197.
[14] 常浩, 刘建瑞, 李伟, 武永生, 高振军, 汤富俊. 大流量自吸离心泵机组轴与曲轴的模态分析[J]. 排灌机械工程学报, 2016, 34(12): 1035-1039.
[15] 马新华, 冯琦, 蒋小平, 王伟, 何勇冠. 多级离心泵内部非定常压力脉动的数值模拟[J]. 排灌机械工程学报, 2016, 34(1): 26-31.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved